Sepam series 20, series 40, series 60, series 80

Digital protection relays

Catalogue 2013

Sepam series 20 Sepam series 40 Sepam series 60 Sepam series 80

General Content

Range description1Sepam series 20 and Sepam series 402Sepam series 603Sepam series 804

Additional modules and accessories

Order form

5

Sepam series 20 Sepam series 40 Sepam series 60 Sepam series 80

Range description

Maximize protection	6
Selection guide for all applications	14
Substation applications	18
Feeder protection	18
Incomer protection	19
Busbar applications	20
Transformer applications	22
Transformer feeder protection	23
Transformer incomer protection	25
Motor applications	28
Generator applications	32
Capacitor applications	36
Low voltage applications	38
Communication networks and protocols	39
Implementation	40
Examples of architectures	42
Available Sepam data	46
Selection table	46
Description	47
Sepam Series 20 - Sepam series 40	51
Sepam series 60	89
Sepam series 80	139
Additional modules and accessories	195
Order form	275

Increase energy availability

 \mathbb{S}

Maximum dependability Your electrical equipment is under control. With Sepam protection relays, you get maximum energy availability for your process.

% available

Sepam protection relays Number one in dependability

Maximize energy availability and the profits generated by your installation while protecting life and property.

Keep informed to manage better

With Sepam, you get intuitive access to all system information in your language so that you can manage your electrical installation effectively. If a problem occurs, clear and complete information puts you in a position to make the right decisions immediately. The electrical supply is restored without delay.

Maintain installation availability

Sepam maintains high energy availability thanks to its diagnostics function that continuously monitors network status. In-depth analysis capabilities and high reliability ensure that equipment is de-energized only when absolutely necessary. Risks are minimized and servicing time reduced by programming maintenance operations.

Enhance installation dependability

Sepam series 80 is the first digital protection relay to deliver dependability and behaviour in the event of failure meeting the requirements of standard IEC 61508.

All Sepam series 10, 20, 40, 60 and 80 boards and electronic components are industrially conformal coated.

This manufacturing allows Sepam to be used in the most severe industrial environments including off-shore oil rigs and chemical factories (IEC 60068-2-60 and EIA 364-65A IIIA).

1982

Launch of first multi-functional digital protection relay

2012

Over 800,000 Sepam units installed around the world

.65

60068

Electrical utilities, petrochemical plants, hospitals, infrastructures, shopping centres, small industry.

Maximize protection

1

Improve satisfaction

A set of simple and effective functions suited to your customer's application

Fast response from Schneider Electric: save time at every step in your project

100% satisfaction

With Sepam protection relays, you can count on simple, high-performance products and the support of top-notch Schneider Electric teams. Meet your obligations the easy way.

Sepam protection relays

Save time at every step in project development and installation to consistently meet your project deadlines.

Go for simplicity

With multi-functional Sepam protection relays, you can measure, manage, analyze and produce diagnostics for all applications in an installation. Range modularity makes it easy to select the relay corresponding exactly to your needs.

The range is structured for typical applications (substations, transformers, generators, capacitors, busbars and motors) and provides the necessary functions for each application (protection, metering, control and monitoring, etc.).

Starting with a Sepam base unit, complete solutions can be built up by adding input/output modules, sensors and communication modules.

Make configuration easily

A single PC software tool for the entire Sepam range makes system start-up and operation particularly easy. The user-friendly program guides you step by step from the initial programming on through to final commissioning. Sepam produces a detailed report on system configuration and all the activated protection functions. On Sepam series 80, the entire setup is saved to a memory cartridge that can be accessed in front, for instance when replacing a unit.

Communicate the open way

In addition to the DNP3, IEC 60870-5-103 and Modbus standards, Sepam complies with IEC 61850 (GOOSE messages, TCP/IP redundancy) and uses the communication protocol that is today's market standard to interface with all brands of electrical-distribution devices.

Installation

Setup

Local display

Supervision

190

Schneider Electric does business in 190 countries

What level of safety? For what applications?

Sepam range design is based on a simple idea. All users should be able to find a solution corresponding exactly to their needs and offering the right balance between performance, simplicity and cost.

... and different levels of protection

Μ

> Thermal protection based on temperature rise calculation, with predictive indications to optimize process control.

> Directional phase over-current protection for closed-loop networks.

> Directional earth-fault protection for all types of neutral systems.

> Fast and highly-sensitive protection of transformers, motors and generators using differential functions with restraint.

1

Start-up was never so easy

The Sepam programming and operating software provides a single environment for the entire range. The result is a simple, user-friendly approach for fast commissioning.

The selection guide proposes the Sepam types suited to your protection needs, based on the characteristics of your application.

The most typical applications are presented with the corresponding Sepam.

Each application example is described by:

■ a single-line diagram indicating: □ equipment to be protected

□ network configuration

□ position of measurement sensors

■ standard and specific Sepam functions to be implemented to protect the application.

The list of functions is given for information purposes. Earthing, wether direct or via an impedance, is represented by the same pictogram, i.e. the pictogram corresponding to a direct connection.

		series	10 See ca	atalogue am series 10		series 20	Page 51
			, ē				
Protection	ns						
	Current	•					
	Voltage						
	Frequency						• •
	Specifics	phase and earth fault overcurrent	phase and earth fault overcurrent	earth fault overcurrent		breaker failure	disconnection by rate of change of frequency
Application	ons						
Sub	ostation P. 18	A	В	N		S20 S24	
	Busbar P. 20						B21 B22
Trans	sformer P. 22	A	В	N		T20 T24	
	Motor P. 28					M20	
Ge	enerator P. 32						
Ca	apacitor P. 36						
Character	ristics						
Logic inputs/	Inputs	4	0	0		0 to 10	0 to 10
outputs	Outputs	7	3	3		4 to 8	4 to 8
Temperature se	ensors					0 to 8	0 to 8
	Current	3l + lo	3l + lo	lo		3l + lo	
Channel	Voltage						3V + Vo
	LPCT ⁽¹⁾					Yes	
Communication	n ports	1				1 to 2	1 to 2
IEC61850 Proto	Docol					Yes	Yes
	Redudancy						
	Goose message				\square	Voc	Vas
Control	Induity					Tes	162
Control	Logic equation editor						
Other	Backup Front Memory cartridge with settings	Lithium batter	Y ⁽⁴⁾				

(1) LPCT: low-power current transducer complying with standard IEC 60044-8.

(2) Control matrix for simple assignment of information from the protection, control and monitoring functions.
 (3) Logipam ladder language (PC programming environment) to make full use of Sepam series 80 functions.
 (4) Standard lithium battery 1/2 AA format 3.6 V front face exchangeable.

		seri	es 40		P	age 53		series 60	Page 89	
Protectio	ns	'					\square	1		
	Current									
	Voltage						H		-	
	Frequency								-	
	Specifics	<u> </u>	directional	directional	directiona			directiona	I directional	
			earth fault	and phase overcurrent	earth fault			earth faul	and phase overcurrent	
Applicati	ons									
Su	bstation P. 18	S40 S50 ⁽⁵⁾	S41 S51 ⁽⁵⁾	S42 S52 ⁽⁵⁾	S43 S53 ⁽⁵⁾	S44 S54 ⁽⁵⁾		S60	S62	
	Busbar P. 20									
Tran	sformer P. 22	T40 T50 ⁽⁶⁾		T42 T52 ⁽⁶⁾				T60	T62	
	Motor P. 28	M40	M41					M61		
Ge	enerator P. 32	G40						G60	G62	
C	apacitor P. 36							C60		
Characte	ristics						П			
Logic inputs/	Inputs	0 to 10					П	0 to 28		
outputs	Outputs	4 to 8						4 to 16		
Temperature se	ensors	0 to 16					П	0 to 16		
	Current	3I + Io					П	3l + lo		
Channel	Voltage	3V, 2U	+ Vo					3V, 2U + Vo or Vnt		
	LPCT ⁽¹⁾	Yes						Yes		
Communication	n ports	1 to 2						1 to 2		
IEC61850 Prot	tocol	Yes						Yes		
	Redudancy	Yes						Yes		
	Goose message							Yes		
	Matrix ⁽²⁾	Yes						Yes		
Control	Logic equation editor	Yes						Yes		
	Logipam ⁽³⁾									
Other	Backup	48 hou	rs					Lithium battery ⁽⁴⁾		
Other	Front Memory cartridge with settings						J	Standard cartridge		J

(1) LPCT: low-power current transducer complying with standard IEC 60044-8.

(2) Control matrix for simple assignment of information from the protection, control and monitoring functions.
(3) Logipam ladder language (PC programming environment) to make full use of Sepam series 80 functions.
(4) Standard lithium battery 1/2 AA format 3.6 V front face exchangeable.

series 80			Page 138
	• •		
directional directional disconnection earth fault earth fault by rate of and phase change of overcurrent frequency	transformer & machine transformer- machine unit differential	voltage and frenquency protection for 2 sets of busbars	capacitor-bank unbalance
S80 S81 S82 S84			
B80		B83	
T81 T82	T 87		
M81	M88 M87		
682	C88 C87		
0 to 42	0 to 42	0 to 42	0 to 42
5 to 23	5 to 23	5 to 23	5 to 23
0 to 16	0 to 16	0 to 16	0 to 16
3I + 2 x lo	2 x 3l + 2 x lo	3l + lo	2 x 3l + 2 x lo
3V + Vo	3V + Vo	2 x 3V + 2 x Vo	3V + Vo
Yes	Yes	Yes	Yes
2 to 4	2 to 4	2 to 4	2 to 4
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Lithium battery ⁽⁴⁾	Lithium battery ⁽⁴⁾	Lithium battery(4)	Lithium battery ⁽⁴⁾
Standard or extended cartridge	Standard or extended cart.	Standard or extended cart	. Standard or extended cart.

(5) S5X applications are identical to S4X applications with the following additional functions:
earth fault and phase overcurrent cold load pick-up,
broken wire detection,
fault locator.
(6) T5X applications are identical to T4X applications with the following additional functions:
earth fault and phase overcurrent cold load pick-up
broken wire detection.

Substation applications

Feeder protection

Protection functions	ANSI code	S20	(5) (5)	B22	S40 S50	S41 S51	S42 S52	S43 S53	S44 S54	S60	S62	S80	S81	S82	S84
Phase overcurrent ⁽¹⁾	50/51	4	4		4	4	4	4	4	4	4	8	8	8	8
Phase overcurrent cold load pick-up	CLPU 50/51		1		4(6)	4(6)	4 ⁽⁶⁾	4 ⁽⁶⁾	4 ⁽⁶						
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	4		4	4	4	4	4	4	4	8	8	8	8
Earth fault cold load pick-up	CLPU 50N/51N		1		4(6)	4(6)	4(6)	4(6)	4(6						
Breaker failure	50BF		1		1	1	1	1	1	1	1	1	1	1	1
Negative sequence / unbalance	46	1	1		2	2	2	2	2	2	2	2	2	2	2
Broken conductor	46BC				1 ⁽⁶⁾										
Thermal overload for cables	49RMS										1		2	2	2
Directional phase overcurrent ⁽¹⁾	67						2				2			2	2
Directional earth fault ⁽¹⁾	67N/67NC					2	2	2			2		2	2	2
Directional active overpower	32P					1	1	1			2		2	2	2
Directional active underpower	37P														2
Positive sequence undervoltage	27D			2						2	2	2	2	2	2
Remanent undervoltage	27R			1						2	2	2	2	2	2
Undervoltage (L-L or L-N)	27			2/1 (4)	2	2	2		2	2	2	4	4	4	4
Overvoltage (L-L or L-N)	59			2	2	2	2		2	2	2	4	4	4	4
Neutral voltage displacement	59N			2	2	2	2			2	2	2	2	2	2
Negative sequence overvoltage	47				1	1	1		1	2	2	2	2	2	2
Overfrequency	81H			1	2	2	2			2	2	2	2	2	2
Underfrequency	81L			2	4	4	4			4	4	4	4	4	4
Rate of change of frequency	81R			1						2	2				2
Recloser (4 cycles) ⁽²⁾	79														
Synchro-check (3)	25														

The figures indicate the number of units available for each protection function

a standard, a options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional input/output modules.
(3) With optional MCS025 synchro-check module.
(4) 2 undervoltage (L-L) and 1 undervoltage (L-N).

(5) Applications S24 and T24 perform the functions of applications S23 and T23 respectively.
 (6) Only for applications S50, S51, S52, S53, S54, T50, T52.

Feeder protection

S20 S24

■ feeder short-circuit and overload protection.

Protection of low-capacitance feeders in impedance earthed or solidly earthed neutral systems: Sepam S20, S24, S40, S44, S50, S54, S60 or S80

no voltage and frequency monitoring.

Protection of high-capacitance feeders in impedance earthed or compensated or isolated neutral systems: Sepam S41, S43, S51, S53, S62 or S81

specific feeder protection: 67N/67NC.

Substation applications

Incomer protection

Busbar applications

2		
2		

Protection functions	ANSI code	B21	B22	B80	B83
Phase overcurrent ⁽¹⁾	50/51			8	8
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G			8	8
Breaker failure	50BF			1	1
Negative sequence / unbalance	46			2	2
Positive sequence undervoltage	27D	2	2	2	2
Remanent undervoltage	27R	1	1	2	2
Undervoltage (L-L or L-N)	27	2/1 ⁽³⁾	2/1 ⁽³⁾	4	4
Overvoltage (L-L or L-N)	59	2	2	4	4
Neutral voltage displacement	59N	2	2	2	2
Negative sequence overvoltage	47			2	2
Overfrequency	81H	1	1	2	2
Underfrequency	81L	2	2	4	4
Rate of change of frequency	81R		1		
Synchro-check ⁽²⁾	25				

The figures indicate the number of units available for each protection function
standard, □ options.
(1) Protection functions with 2 groups of settings.
(2) With optional MCS025 synchro-check module.
(3) 2 undervoltage (L-L) and 1 undervoltage (L-N).

Busbar applications

Transformer applications

Standard transformer application diagrams do not take voltage levels into account:

■ the transformer primary winding is always at the top ■ the transformer secondary winding is always at the bottom.

The transformer primary and secondary windings need to be protected.

The Sepam proposed can be installed on either the primary or secondary winding of the transformer. The other winding can be protected by an incomer or feeder type substation application Sepam.

B ()		Tee	Tot	T 40	T (0	T 00	Tee	T 04	TOO	TOT
functions	code	120	124	140 T50	142 T52	160	162	181	182	187
Phase overcurrent	50/51	4	4	4	4	4	4	8	8	8
Phase overcurrent cold load pick-up	CLPU 50/51		1	4 ⁽⁵⁾	4(5)					
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	4	4	4	4	4	8	8	8
Earth fault cold load pick-up	CLPU 50N/51N		1	4 ⁽⁵⁾	4 ⁽⁵⁾					
Breaker failure	50BF		1	1	1	1	1	1	1	1
Negative sequence / unbalance	46	1	1	2	2	2	2	2	2	2
Broken conductor	46BC			1 ⁽⁵⁾	1 ⁽⁵⁾					
Thermal overload for machines ⁽¹⁾	49RMS	2	2	2	2	2	2	2	2	2
Restricted earth fault differential	64REF					2	2	2	2	2
Two-winding transformer differential	87T									1
Directional phase overcurrent ⁽¹⁾	67				2		2		2	2
Directional earth fault ⁽¹⁾	67N/67NC				2		2	2	2	2
Directional active overpower	32P						2	2	2	2
Overfluxing (V / Hz)	24									2
Positive sequence undervoltage	27D					2	2	2	2	2
Remanent undervoltage	27R					2	2	2	2	2
Undervoltage (L-L or L-N)	27			2	2	2	2	4	4	4
Overvoltage (L-L or L-N)	59			2	2	2	2	4	4	4
Neutral voltage displacement	59N			2	2	2	2	2	2	2
Negative sequence overvoltage	47			1	1	2	2	2	2	2
Overfrequency	81H			2	2	2	2	2	2	2
Underfrequency	81L			4	4	4	4	4	4	4
Thermostat / Buchholz ⁽²⁾	26/63									
Temperature monitoring (8/16 RTDs) ⁽³⁾	38/49T	□ 8 RTDs	□ 8 RTDs	□ 8/16 RTDs						
Synchro-check (4)	25									

The figures indicate the number of units available for each protection function \blacksquare standard, \square options.

(1) Protection functions with 2 groups of settings.

(1) Protection functions with 2 groups of settings.
 (2) According to parameter setting and optional input/output modules.
 (3) With optional MET148-2 temperature input modules.
 (4) With optional MCS025 synchro-check module.
 (5) Only for applications S50, S51, S52, S53, T50, T52.

Transformer applications

Transformer feeder protection

Transformer feeder protection with voltage monitoring: Sepam T40, T50, T60 or T81

Note: for long feeders, the 50G/51G function may be replaced by the 67N/67NC.

Transformer applications

Transformer feeder protection

Note: for long feeders, the 50G/51G function may be replaced by the 67N/67NC.

Transformer applications

Transformer incomer protection

P

Transformer applications

Transformer incomer protection

Protection of 2 non-coupled transformer incomers: Sepam T60 or T81

Transformer applications

Transformer incomer protection

Parallel transformer incomer protection: Sepam T42, T52, T62 or T82

- transformer directional phase overcurrent protection: 67
- transformer secondary earth fault protection: 50G/51G, 59N.

- transformer directional phase overcurrent protection: 67
- transformer secondary earth fault protection: 67N/67NC, 64REF
- with synchro-check (ANSI 25).

Parallel incomer differential protection: Sepam T87

- transformer differential protection: 87T
- directional transformer protection: 67
- transformer secondary earth fault protection: 50G/51G, 67N/67NC 64REF.

1

Motor applications

Protection functions	ANSI	M20	M40	M41	M61	M81	M87	M88
	code							
Phase overcurrent ⁽¹⁾	50/51	4	4	4	4	8	8	8
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	4	4	4	8	8	8
Breaker failure	50BF		1	1	1	1	1	1
Negative sequence / unbalance	46	1	2	2	2	2	2	2
Thermal overload for machines ⁽¹⁾	49RMS	2	2	2	2	2	2	2
Two-winding transformer differential	87T							1
Machine differential	87M						1	
Directional earth fault ⁽¹⁾	67N/67NC			2	2	2	2	2
Directional active overpower	32P			1	2	2	2	2
Directional reactive overpower	32Q/40			1	1	1	1	1
Field loss (underimpedance)	40				1	1	1	1
Phase undercurrent	37	1	1	1	1	1	1	1
Excessive starting time, locked rotor	48/51LR/14	1	1	1	1	1	1	1
Starts per hour	66	1	1	1	1	1	1	1
Loss of synchronization	78PS					1	1	1
Overspeed (2 set points) ⁽²⁾	12							
Underspeed (2 set points) ⁽²⁾	14							
Positive sequence undervoltage	27D		2	2	2	2	2	2
Remanent undervoltage	27R		1	1	2	2	2	2
Undervoltage (L-L or L-N)	27		2	2	2	4	4	4
Overvoltage (L-L or L-N)	59		2	2	2	4	4	4
Neutral voltage displacement	59N			2	2	2	2	2
Negative sequence overvoltage	47			1	2	2	2	2
Overfrequency	81H			2	2	2	2	2
Underfrequency	81L			4	4	4	4	4
Thermostat / Buchholz	26/63							
Temperature monitoring (8/16 RTDs) ⁽³⁾	38/49T	□ 8 RTDs	□ 8/16 RTDs	□ 8/16 RTDs	□ 8/16 RTDs	□ 8/16 RTDs	□ 8/16 RTDs	□ 8/16 RTDs

The figures indicate the number of units available for each protection function
standard, □ options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional input/output modules.
(3) With optional MET148-2 temperature input modules.

Motor applications

Motor protection

- internal motor fault protection
- power supply fault protection
- driven load fault protection
- RTD temperature monitoring (ANSI 38/49T).

Motor protection without voltage monitoring: Sepam M20 direct starting.

Motor protection with voltage monitoring: Sepam M40, M41, M61 or M81

Motor differential protection: Sepam M87 Motor differential protection: 87M. Phase protection by self-balancing-differential scheme: 50/51. direct starting. auto-transformer direct starting. starting. DFRADEG DE88057 DE88058 M87 M87 M87 38/ 49T 38/ 38/ Μ Μ Μ

Motor applications

1

Motor-transformer unit protection

- motor and transformer protection against internal faults
- power supply fault protection
- driven load fault protection
- internal transformer protection: Thermostat / Buchholz (ANSI 26/63)
- RTD temperature monitoring (ANSI 38/49T).

Motor-transformer unit protection without voltage monitoring: Sepam M20

transformer primary earth fault protection: 50G/51G.

Note: monitoring of motor insulation must be ensured by another device.

Motor-transformer unit protection with voltage and transformer monitoring: Sepam M40, M41, M61 or M81

- motor earth fault protection: 59N
- transformer primary earth fault protection: 50G/51G.
- transformer monitoring: Buchholz, thermostat, temperature measurement.

Motor-transformer unit protection with voltage and transformer monitoring: Sepam M81

- motor earth fault protection: 50G/51G
- transformer primary earth fault protection: 50G/51G
- transformer monitoring: Buchholz, thermostat, temperature measurement.

Motor applications

Generator applications

Protection functions	ANSI code	G40	G60	G62	G82	G87	G88
Phase overcurrent ⁽¹⁾	50/51	4	4	4	8	8	8
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	4	4	8	8	8
Breaker failure	50BF	1	1	1	1	1	1
Negative sequence / unbalance	46	2	2	2	2	2	2
Thermal overload for machines (1)	49RMS	2	2	2	2	2	2
Restricted earth fault differential	64REF				2		2
Two-winding transformer differential	87T						1
Machine differential	87M					1	
Directional phase overcurrent ⁽¹⁾	67			2	2	2	2
Directional earth fault ⁽¹⁾	67N/67NC			2	2	2	2
Directional active overpower	32P	1	2	2	2	2	2
Directional reactive overpower	32Q/40	1	1	1	1	1	1
Directional active underpower	37P		2	2	2		
Field loss (underimpedance)	40		1	1	1	1	1
Loss of synchronization	78PS				1	1	1
Overspeed (2 set points) ⁽²⁾	12						
Underspeed (2 set points) ⁽²⁾	14						
Voltage-restrained phase overcurrent	50V/51V	1	1	1	2	2	2
Underimpedance	21B		1	1	1	1	1
Inadvertent energization	50/27				1	1	1
Third harmonic undervoltage / 100% stator earth fault	27TN/64G2 64G				2	2	2
Overfluxing (V / Hz)	24				2	2	2
Positive sequence undervoltage	27D		2	2	2	2	2
Remanent undervoltage	27R		2	2	2	2	2
Undervoltage (L-L or L-N)	27	2	2	2	4	4	4
Overvoltage (L-L or L-N)	59	2	2	2	4	4	4
Neutral voltage displacement	59N	2	2	2	2	2	2
Negative sequence overvoltage	47	1	2	2	2	2	2
Overfrequency	81H	2	2	2	2	2	2
Underfrequency	81L	4	4	4	4	4	4
Rate of change of frequency	81R		2	2			
Thermostat / Buchholz	26/63						
Temperature monitoring (8/16 RTDs) ⁽³⁾	38/49T	□ 8/16 RTDs	□ 8/16 RTDs	□ 8/16 RTDs	□ 8/16 RTDs	□ 8/16 RTDs	□ 8/16 RTDs
Svnchro-check (4)	25						

The figures indicate the number of units available for each protection function

The figures indicate the number of units available for each protection in a standard,
or options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional input/output modules.
(3) With optional MET148-2 temperature input modules.
(4) With optional MCS025 synchro-check module.

Generator applications

Generator protection

- internal generator fault protection
- network fault protection
- driving machine fault protection
- RTD temperature monitoring (ANSI 38/49T)
- voltage and frequency monitoring.

Protection of a separate generator: Sepam G40 or G60

Protection of a generator coupled to other generators or to a network: Sepam G62 or G82

Short-circuit detection on generator side.

Generator applications

Generator differential protection: Sepam G87

Phase protection by self-balancing differential scheme: 50/51.

Generator-transformer unit protection

- generator and transformer protection against internal faults
- network fault protection
- driving machine fault protection
- RTD temperature monitoring (ANSI 38/49T)
- voltage and frequency monitoring.

Separate generator-transformer unit protection. Sepam G40 or G60

Earth fault protection:

■ 50G/51G

Note: monitoring of generator insulation must be ensured by another device.

Generator applications

Capacitor applications

Protection functions	ANSI code	S20	S24 ⁽³⁾	S40	C60	C86
Phase overcurrent ⁽¹⁾	50/51	4	4	4	4	8
Phase overcurrent cold load pick-up	CLPU 50/51		1			
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	4	4	4	8
Earth fault cold load pick-up	CLPU 50N/51N		1			
Breaker failure	50BF		1	1	1	1
Negative sequence / unbalance	46	1	1	2	2	2
Thermal overload for capacitors ⁽¹⁾	49RMS				1	1
Capacitor-bank unbalance	51C					8
Positive sequence undervoltage	27D				2	2
Remanent undervoltage	27R				2	2
Undervoltage (L-L or L-N)	27			2	2	4
Overvoltage (L-L or L-N)	59			2	2	4
Neutral voltage displacement	59N			2	2	2
Negative sequence overvoltage	47			1	2	2
Overfrequency	81H			2	2	2
Underfrequency	81L			4	4	4
Temperature monitoring (8/16 RTDs) ⁽²⁾	38/49T				□ 8/16 RTDs	□ 8/16 RTDs

The figures indicate the number of units available for each protection function
standard, □ options.
(1) Protection functions with 2 groups of settings.
(2) With optional MET148-2 temperature input modules.
(3) Applications S24 and T24 perform the functions of applications S23 and T23 respectively.
Capacitor applications

Capacitor bank protection

Protection of a capacitor bank (delta connection) without voltage monitoring: Sepam S20, S24

capacitor bank short-circuit protection.

Protection of a capacitor bank with voltage monitoring: Sepam S40, C60 or C86

- capacitor bank short-circuit protection
- voltage and frequency monitoring
- overload protection: ANSI 49RMS (Sepam C60 and C86 only).

Protection of a double-star connected capacitor bank with 1 to 4 steps: Sepam C86 $\,$

- capacitor bank short-circuit protection
- voltage and frequency monitoring
- specific overload protection, self-adapted to the number of connected steps
- unbalance protection: 51C.

DERROR1

Low voltage applications

Compatibility of Sepam low voltage

Protection functions

Sepam protection functions can be used with low voltage (LV) as long as the conditions below are met:

The distribution circuit must be rated higher than 32 A.

■ The installation must comply with standard IEC 60364.

For additional information about the compatibility of Sepam protection functions with low voltage, please contact Schneider Electric technical support.

The table below lists the Sepam protection functions suitable for low voltage according to the earthing system used. Sepam protection functions not listed in this table are not suitable for low voltage.

Protection functions	ANSI code	Earthing system				Comments
		TN-S	TN-C	TT	IT	
Phase overcurrent ⁽¹⁾	50/51	•	•	•	•	Neutral conductor not protected
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N			•	(1)	
Earth fault / Sensitive earth fault (3)	50G/51G		•	•	(3)	
Negative sequence / unbalance	46		•	•	•	Threshold to be adapted to the phase unbalance
Thermal overload for cables/ machines/capacitor ⁽¹⁾	49RMS	•	-	•	•	Neutral conductor not protected
Restricted earth fault	64REF		•	•	(3)	
Two-winding transformer differential	87T		•	•	•	
Directional phase overcurrent (1)	67		•	•	(⁴⁾	
Directional earth fault ⁽¹⁾	67N/67NC					Incompatible with LV diagrams (4-wire)
Directional active overpower	32P	•	•	(2)	(2)	
Directional reactive overpower	32Q	=	=	(2)	(2)	
Undervoltage (L-L or L-N)	27	•	•	•	•	
Remanent undervoltage	27R	•	•	•	•	
Overvoltage (L-L or L-N)	59	=	=	=	=	
Neutral voltage displacement	59N	•	•	(4)	(4)	Residual voltage not available with 2 VTs
Negative sequence overvoltage	47	•	•	•	•	
Overfrequency f	81H	=	=	=	=	
Underfrequency f	81L	•	•	•	•	
Rate of change of frequency f	81R	•	•	=	=	
Synchro-check	25	•	=	=	=	

■ : Protection function suitable for low voltage

(1) Not recommended even on the second fault.

(2) 2-wattmeter method not suitable for unbalanced loads.
 (3) Residual current too low in IT.

(4) 2 phase-to-phase VTs

Low voltage earthing systems

There are 4 low voltage (LV) earthing systems designated by a 2 or 3-letter acronym: TN-S.

- TN-C
- TT.
- IT.

The letters making up the acronym have the following meanings:

Letter		Meaning
First letter		Transformer neutral point
	I	Earthed with an impedance
	Т	Directly earthed
Second letter		Electrical exposed conductive parts of the consumer
	Т	Earthed
	N	Connected to the neutral conductor
Third letter (optional)		Protective Earth conductor
	S	Separate N neutral conductor and PE Protective Earth conductor
	С	Combined N neutral conductor and PE Protective Earth conductor (PEN)

Communication networks and protocols

All Sepam relays communicate and can be integrated in a communication architecture.

All Sepam information can be accessed remotely.

Sepam connection to two communication networks (S-LAN and E-LAN).

Two types of communication network

Sepam relays can be connected to two types of networks, thus providing access to different types of information:

- a supervisory local area network or S-LAN
- an engineering local area network or E-LAN.

Examples of communication architectures are presented on next pages.

Supervisory local area network (S-LAN)

A S-LAN is used for supervision functions concerning the installation and the electric network. It can be used to connect a set of communicating devices using the same communication protocol to a centralized supervision system.

Sepam can be connected to an S-LAN using one of the following communication protocols:

- Modbus RTU
- Modbus TCP/IP
- DNP3
- IEC 60870-5-103
- IEC 61850

Engineering local area network (E-LAN)

An E-LAN is intended for Sepam parameter-setting and operating functions. It can be used to connect a set of Sepam units to a PC running the SFT2841 software. In this configuration, the operator has remote and centralized access to all Sepam information, with no need to develop any special communication software. The operator can easily:

- set up the Sepam general parameters and functions
- collect all Sepam operating and diagnostics information
- manage the protection system for the electric network
- monitor the status of the electric network
- run diagnostics on any incidents affecting the electric network.

Communication protocols

Modbus RTU

Modbus RTU is a data-transmission protocol, a de facto standard since 1979 widely used in industry and accepted by many communicating devices.

For more information on the Modbus RTU protocol, visit www.modbus.org.

Modbus TCP/IP

Modbus TCP/IP communication protocol offers the same functions as Modbus RTU as well as compatibility with multi-master architectures

DNP3

DNP3 is a data-transmission protocol specially suited to the needs of distributors for remote control/monitoring of substations in the electric network. For more information on the DNP3 protocol, visit www.dnp.org.

IEC 60870-5-103

IEC 60870-5-103 is an accompanying standard for the standards in the IEC 60870-5 series. It defines communication between protection devices and the various devices in a control system (supervisor or RTU) in a substation. For more information on the IEC 60870-5-103 protocol, visit www.iec.ch.

IEC 61850

The standards in the IEC 61850 series define a protocol for communication in electrical substations. The Ethernet-based protocol offers advanced characteristics and interoperability between multi-vendor devices.

The Sepam relay handles the station bus, in compliance with standards IEC 61850-6, 7-1, 7-2, 7-3, 7-4 and 8-1 edition 1.

For more information on the IEC 61850 protocol, visit www.iec.ch.

Other protocols

A gateway / protocol converter must be used to connect Sepam to a communication network based on other protocols.

IEC 60870-5-101 & IEC 60870-5-104

The SIS Gateway (Substation Controller) or C264 (Bay Computer) are database concentrators for industrial networks.

These gateways enable Sepam connection to IEC 60870-5-101 & IEC 60870-5-104 networks.

These gateways have a good capacity to manage high device concentration. For more information on the SIS Gateway or C264, contact your local Schneider-Electric Support.

Implementation

A complete range of Sepam communication interfaces

ACE850 communication interface

Sepam IEC 61850 server

Sepam communication interfaces

A complete range of accessories

Sepam connects to a communication network via a communication interface. Selection of the interface depends on the communication architecture:

- number of networks to be connected:
- □ 1 network, S-LAN or E-LAN
- 2 networks, S-LAN and E-LAN
- communication protocol selected for the S-LAN: Modbus RTU, DNP3,
- IEC 60870-5-103 or IEC 61850 or Modbus TCP/IP
- network physical interface:
- □ 2-wire or 4-wire RS485
- □ Ethernet
- □ fiber optic, with star or ring architecture.

Sepam communication interfaces are presented in detail on chapter communication accessories selection guide.

Direct Sepam connection to the Ethernet network

Sepam series 40, series 60 and Sepam series 80 units can be directly connected to the Ethernet network via the ACE 850 communication interface. In this way they make full use of Ethernet network performance and all IEC 61850 functions.

- Compatible communication protocols: Modbus TCP/IP, IEC 61850
- Network physical interface:

□ 10 baseT /100 base TX (star or ring architecture)

□ 100 base FX (star or ring architecture).

Easy implementation

The communication interfaces are remote modules that are easy to install and connect.

The SFT2841 software is used for complete setup of the communication interfaces: protocol selection and setup of the functions specific to each protocol

protocol selection and setup of the functions specific to each proto
 setup of the physical interface.

Advanced configuration of IEC 61850 protocol

The SFT850 software is used for advanced configuration of the IEC 61850 protocol for both the ECI850 server and the ACE850 communication interface:

- complete Sepam-configuration database (.icd)
- processing of system-configuration files (.scd)
- creation and processing of ECI850 and ACE850 configuration files (.cid).

IEC 61850 protocol

Two levels of IEC 61850 protocol functionality are supported by the Sepam range.

Sepam IEC 61850 level 1 server

The entire Sepam range can be connected to an IEC 61850 (level 1) system via the Sepam ECI850 server, representing the most economical solution. Level 1 allows :

- upgrading of existing IEC 61850 Modbus installations on a single Ethernet port
- supervision of electrical characteristics and Sepam status
- circuit breaker control
- time-stamping, synchronisation via SNTP, network diagnostics and disturbance recording

The server also ensures compatibility with the E-LAN network.

Implementation

Sepam IEC 61850 level 2 Sepam series 40, Sepam series 60 and Sepam series 80 units can be connected directly to an IEC 61850 system via the ACE850 communication interface. In this way they make full use of Ethernet network performance and all IEC 61850 functions

- Compatible communication protocols: Modbus TCP/IP, IEC 61850
- Network physical interface :
- □ 10 baseT /100 baseTX (star or ring architecture)
- □ 100 base FX (star or ring architecture).
- Level 2 allows :
- Level 1 functions

■ Dual port Ethernet for redundancy on Sepam series 40, Sepam series 60 and series 80 units (star or ring connection)

■ GOOSE message on Sepam series 60 and Sepam series 80 only (see below)

■ Simultaneous Modbus TCP/IP TRA15

IEC 61850 GOOSE message

GOOSE messages allow standardised communication between Sepam units. Sepam series 60, and series 80 and the ACE850 communication interface use GOOSE messages to provide :

- Improved system protection :
- □ logic discrimination
- □ intertripping
- □ load shedding
- Better system control on Sepam series 80:
- □ user-defined Logipam contacts
- High-level safety and performance are guaranteed for these messages by :
- using fiber optic connections,

■ using Ethernet switches which are compatible with IEC 61850 and, for the ring connection, RSTP 802.1d 2004, such as RuggedCom switches (e.g. RS900xx, RSG2xxx)

choosing a fault-tolerant communication architecture.

Ethernet gateways in a Modbus environment

Sepam can be connected to an Ethernet TCP/IP network in a totally transparent manner via the EGX100 gateway or the EGX300 server.

EGX100 gateway

The EGX100 offers access to enhanced communication and multi-master architectures. It provides IP (Internet Protocol) connection for communication on all types of networks, notably intranets and internet.

EGX300 server

In addition to Ethernet TCP/IP connection, the EGX300 offers a web server and HTML pages designed specially to present the essential Sepam information. This information may be accessed in clear text and at no risk on any PC connected to the intranet/internet and equipped with a web browser.

Access to Sepam information via a web browser.

Examples of architectures

Seven typical communication architectures are presented in the examples below. Each architecture is presented with:

- a simplified diagram
- the characteristics of the implemented networks.

The physical architecture of the communication networks and the connection to networks depends on the type of network (RS485 or fiber optic) and the communication interfaces used. Sepam communication interfaces are presented in detail on page 236.

Communication

Examples of architectures

Examples of architectures

Example 6: S-LAN over IEC 61850 and E-LAN over Ethernet TCP/IP level 1 Control Center or RTU **Characteristics of Modbus network between** Sepam relays (S-LAN and E-LAN) SFT 2841 Protocol Modbus RTU Physical medium Twisted-pair (2-wire or 4-wire RS485) F-I AN **Characteristics of Ethernet network** Ethernet TCP/IP IEC 61850 S-LAN IEC 61850 Protocol Ethernet 10/100 BaseTx Physical medium Modbus RTU / IEC 61850 Sepam ECI850 server EC1850 EC1850 ECI850 EC1850 functions conversion Multiplexing between S-LAN and E-LAN networks . The level 1 allows: ... Upgrading of existing IEC 61850 Modbus installations on a single Ethernet port Sepam Sepam Sepam Sepam Supervision of electrical series 40 series 60 series 80 series 20 characteristics and Sepam status Circuit-breaker control Time-stamping, synchronisation via SNTP, network diagnostics and disturbance recording The Sepam IEC 61850 level 1 Server also enables connection of several Sepam units. The maximum Sepam configuration for a Sepam IEC 61850 level 1 server is: ■ 2 Sepam Series 60 or 80 units, or ■ 3 Sepam Series 40 units, or ■ 5 Sepam Series 20 units. Supervisor SFT 2841 or RTU DF R056 E-LAN S-LAN Ethernet TCP/IP/IEC 61850 ECI850 ECI850 ECI850 S-LAN and E-LAN S-LAN S-LAN and E-LAN and E-LAN RS 485/Modbus RCE949-2 ACE949-2 Rc Sepam Sepam series 60 or 80 series 60 or 80 RS 485/Modbus ACE949-2 ACE949-2 ACE949-2 ₿%¢ ₿%¢ Rc . . Sepam Sepam Sepam series 40 series 40 series 40 RS 485/Modbus ACE949-2 ACE949-2 ACE949-2 ACE949-2 ₿%¢ ₿%¢ ACE949-2 ₿%¢ ₿%¢ Rc! _____ Ē E. п., Sepam series 20 Note: Rc : line impedance matching resistor.

Schneider

Examples of architectures

ACE850TP or ACE850FO communication architecture

Example 7: S-LAN over IEC 61850 and E-LAN over Ethernet TCP/IP (Sepam series 40, series 60 and series 80) level 2

ondiadeconocido or Earc	
Protocol	IEC 61850
Physical medium	Ethernet 10/100 BaseTx or 100 Base Fx
Functions supported	 Level 1 functions Dual port Ethernet for redundancy on series 40, series 60 and series 80 (star or ring connection) GOOSE messaging service on series 60 and series 80

Performance

Redundancy performance tests have been conducted using RuggedCom switches (RS900xx and RSG2xxx ranges), compatible with RSTP 802.1d 2004. To ensure optimum performance of the protection system during communication between Sepam units via GOOSE messages, we strongly recommend setting up a fault-tolerant fiber optic ring structure as shown in the connection examples. *Note : Protection performance during communication between Sepam units via GOOSE messages is only ensured by using:*

fiber optic connections

■ IEC 61850-compatible managed Ethernet switches.

ROOT Ethernet switch

The ROOT Ethernet switch is the master switch of the RSTP reconfiguration function:

only one ROOT Ethernet switch is required per Ethernet network, in the main network loop.

a Sepam unit should not be the ROOT Ethernet switch of the network.

Example of Sepam units connected in a star configuration

Sepam

series 40

Sepam series 60 or 80

Sepam

series 60 or 80

1

Sepam

series 40

Available Sepam data Selection table

	Mod	lbus I	RTU	DNP3					IEC	6087	0-5-1	03	MODBUS TCP/IP IEC 61850			
	serie	S	~~		seri	es	~~		serie	es (~~		serie	s ECI85	50 ⁽¹⁾	
Dete transmitted f	20	40	60	80	20	40	60	80	20	40	60	80	20	40	60	80
Data transmitted f	rom	Separ	n to t	nesu	perv	isor										
Metering and diagnosis	s	_	_	_	_			_	_	_	_	_	_	_	_	_
Measurements	-								-	-	-	-				
Energy	_				_				_				-	-		
Network diagnosis	-								_				(2)	(2)	(2)	(2)
Machine diagnosis	-												(2)	(2)	(2)	(2)
Switchgear diagnosis	-								_				(2)	(2)	(2)	(2)
Sepam diagnosis	-	-							-	-	-		_			
Logipam counters				•				-								-
Remote indications																
Alarms and internal status conditions		•	-	•		•	•	•	•	•	•	•	(2)	(2)	(2)	(2)
Logic inputs					•							•	(2)	(2)	(2)	(2)
Logic outputs													(2)	(2)	(2)	(2)
Logic equations																
Data transmitted f	rom (the su	iperv	isor to	o Sep	bam										
Pulse-type remote-control	•	•	•	•	1	•	•	•	•	•	•	•	(2)	(2)	(2)	(2)
Pulse-type remote-control orders, in "Select Before	•	•	•	•	2	•	•	•					(2)	(2)	(2)	(2)
Operate" mode Maintained remote-control				•												•
Remote control security																
Data accessible vi	a spe	ecial f	unct	ions										-	_	_
Time-tagging																
Time-tagged events																•
Unsollicited events					•											
Time-setting and synchronization	•	•	-	•	1	•	•	•	•	•	-	•	•	•	•	•
Remote setting																
Selection of the protection-	•	•	•	•	2	•	•	•	•	•	•	•	•	•	•	•
Reading/writing of protection settings	•	•	-	•												
Reading of general parameters	•		•	•												
Reading/writing of analog output (MSA141)	•	•	•		•	•	•									
Network diagnosis																
Transfer of disturbance- recording data	•	•	-	•	1	•	•		•	-	•	•	•	•	•	•
Tripping contexts														(2)	(2)	(2)
Out-of-sync context														(2)	(2)	(2)
Data exchanged b	etwe	en Se	pam	units												
Protection data																
Logic discrimination															-	•
Intertripping																
Load shedding (motor application only)														_	•	•
Inhibit closing																
Miscellaneous																
Identification of Sepam																

(1) To or from the Sepam series 80, series 60, series 40 and series 20 units, depending on the case. (2) Depending on the modelling of the IEC 61850 logic nodes.

Available Sepam data

Description

Data transmitted from Sepam to the supervisor

Metering and diagnosis

The values measured by Sepam that may be remote accessed are divided into the following categories:

- measurements: currents, voltages, frequency, power, temperatures, etc.
- energy: calculated or pulse-type energy counters
- network diagnosis: phase displacement, tripping currents, unbalance ratio, etc.
- machine diagnosis: temperature rise, motor starting time, remaining operating time before overload tripping, waiting time after tripping, etc.
- switchgear diagnosis: cumulative breaking current, operating time and number of operations, circuit breaker charging time, etc.
- Sepam diagnosis: partial or major fault, etc.
- Logipam counters.

Remote indications

The logic-state information that may be remote accessed are divided into the following categories:

- alarms and internal status conditions
- status of logic inputs
- status of logic outputs
- status of nine LEDs on the front panel of Sepam
- status of logic-equation output bits.

Alarms and internal status conditions

The alarms and internal status conditions are remote indications (TS) pre-assigned to protection and control functions.

Remote indications depend on the type of Sepam and can be re-assigned by Logipam (when a TS is re-assigned with logipam, it is disconnected from the previous pre-assigned signification).

The remote indications that can be accessed via the communication link include: all protection-function alarms

- monitoring-function alarms: CT or VT fault, control fault
- Sepam status data:
- □ Sepam not reset
- □ remote setting inhibited, remote-control orders inhibited
- status data on the following functions:
- □ recloser: in service / inhibited, reclosing in progress / successful, permanent trip

 $\hfill\square$ disturbance recording: records inhibited / stored.

Data transmitted from the supervisor to Sepam

Pulse-type remote-control orders

Pulse-type remote-control orders (TC) may be carried out in two modes (selected by parameter setting):

. ■ direct mode

confirmed SBO (select before operate) mode.

Remote-control orders are pre-assigned to metering, protection and control functions and depend on the type of Sepam.

They are used for the following, in particular:

- to control breaking device opening and closing
- to reset Sepam and initialize peak-demand measurements
- to select the active group of settings by enabling group A or B
- to inhibit or enable the following functions: recloser, thermal overload protection,

disturbance recording. Remote-control orders can be re-assigned by Logipam.

Remote-control security

Transmission of Sepam series 60 and series 80 remote controls and settings over a Modbus S-LAN can be password protected.

Available Sepam data Description

1

Sepam supports IEC 61850 logical nodes as indicated in the following table. Note that the actual instantiation of each logical node depends on the application.

Nodes		Sepam series 20	Sepam series 20	Sepam series 40	Sepam series 60	Sepam series 80
Lievetem	legical nodes	DUSDal	Others			
	Physical device information					
		-	-	-	-	
D: logical		_	_	_	_	_
	Differential					
	Directional overnower					-
	Directional undernower			-	-	-
PERC	Rate of change of frequency					-
PHIZ	Ground detector					
PMRI	Motor restart inhibition					
PMSS	Motor starting time supervision			•		
PPAM	Phase angle measuring					
PSDE	Sensitive directional earth fault					
PTOC			•	•	•	
PTOF	Overfrequency	•				
PTOV	Overvoltage					
PTRC	Protection trip conditioning		•		•	•
PTTR	Thermal overload		•	•		•
PTUC	Undercurrent			•		•
PTUV	Undervoltage					•
PTUF	Underfrequency	•			•	•
PVOC	Voltage controlled time overcurrent			•		•
PVPH	Volts per Hz	_				•
PZSU	Zero speed or underspeed					
R: logical	nodes for protection related functions					
RBRF	Breaker failure					
RFLO	Fault locator					
RREC	Autoreclosing					
RDRE	Disturbance recorder function					
RSYN	Synchronism-check or synchronizing					
C: logical	nodes for control					
CSWI	Switch controller					
GG: logic	al nodes for generic references					
GG: logici						
M : logical	I nodes for matering and measurement					
инлі мнлі	Harmonics or interharmonics					
MHAN	Non phase related harmonics				-	-
MMTR	Metering				-	-
MMXII	Measurement	-	-	-	-	-
MSQI	Sequence and umbalance					
MSTA	Metering statistics					
SIML	Insulation medium supervision			•	•	
X: logical	nodes for switchgear					
X. IUgical	Circuit breaker					
7. Logical	nodes for further newer system cavity and	_	-	-	-	-
Z: logical	Consister herek				-	-
ZUAP	Capacitor bank				-	-

Available Sepam data

Description

Time-tagging

Time-tagged events

The time-tagging function assigns a date and precise time to status changes (events) so that they can be accurately organized over time.

- Sepam systematically time-tags the following events:
- status changes of all logic inputs
- status changes of all remote indications (TS alarms and internal status conditions).

Each event is time-tagged to within one millisecond.

The number of stacks of time-tagged events managed by Sepam on each communication port and the volume of each stack in terms of the numbers of events depend on the communication protocol used.

	Modbus RTU	DNP3	IEC 60870-5-103	IEC 61850
Number of event stacks for each Sepam communication port	2	1	1	Depending on configuration
Number of events per stack	64	100	100	Depending on configuration

Whatever the communication protocol used, Modbus RTU, DNP3, IEC 60870-5-103 or IEC 61850 events may be used by a remote monitoring and control system for data logging and histories, for example.

Unsollicited events

Using the DNP3 and IEC 61850 protocols, Sepam can spontaneously transmit time-tagged events to the supervisor. The transmission of unsollicited events must be activated during setup.

Time-setting and synchronization

The Sepam internal clock manages the date and time.

- Time-setting is possible:
- via the Sepam display
- using the SFT2841 software
- via the communication link.
- To ensure long-term time stability or to coordinate a number of devices, Sepam units can be synchronized:
- by an external pulse to a dedicated logic input
- via the communication link.

Remote setting

Sepam parameter and protection settings

- The following remote-setting functions are available:
- selection of the protection-setting group
- reading of general parameters
- reading of protection settings (remote reading)
- writing of protection settings (remote setting).
- The writing of protection settings may be inhibited by parameter setting.

S-LAN and E-LAN networks

The availability of remote-setting functions over the S-LAN depends on the communication protocol used.

All remote-setting functions are available over the E-LAN using the SFT2841 software.

Other data accessible via special functions

Network diagnosis

The network diagnostic information recorded in files by Sepam can also be transmitted over the communication link:

disturbance-recording records in COMTRADE format

- tripping contexts
- Out-of-sync context.

Identification of Sepam

The identification function enables the supervisor to clearly identify the device connected to the S-LAN, based on the following elements of information:

- manufacturer identification
- Sepam type.
- This function is available for all Sepam relays, whatever the protocol used.

schneider-electric.com

CAD software and tools

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... The CAD software and tools enhance productivity

and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers. Last but not least, they optimise use

of our products while also complying with standards and proper procedures.

the the most of you		and the second second	
		Bang History Hill Agen 	

Sepam series 20 Sepam series 40 Sepam series 60 Sepam series 80

Sepam series 20 and Sepam series 40

Range description	5
Sepam series 20 - Sepam series 40	51
Selection table Sepam series 20	52
Selection table Sepam series 40	53
Sensor inputs	54
General settings	55
Metering and diagnosis Description Characteristics	56 56 59
Protection Description Main characteristics Setting ranges	60 60 64 65
Control and monitoring Description Description of predefined functions Adaptation of predefined functions using the SFT2841 software	68 68 69 71
Characteristics Sepam series 20 Sepam series 40	72
Base unit	72
Presentation	72
Dimensions	75
Description	76
Environmental characteristics	79
Connection diagrams	80
Base unit	80
Sepam series 20	80
Sepam series 40	81
Other phase current input connection schemes Other residual current input connection schemes	82 83
Voltage inputs	85
Sepam series 20	85
Sepam series 40	86
Sepam series 60	89
Sepam series 80	139
Additional modules and accessories	195
Order form	275

Sepam series 20 Sepam series 40

Selection table Sepam series 20

		Substa	tion	Transfo	rmer	Motor	Busbar	
Protection	ANSI code	S20	S24 (4)	T20	T24 ⁽⁴⁾	M20	B21 ⁽³⁾	B22
Phase overcurrent	50/51	4	4	4	4	4		
Phase overcurrent cold load pick-up/blocking	CLPU 50/51		1		1			
Earth fault / Sensitive earth fault	50N/51N	4	4	4	4	4		
Earth fault cold load pick-up/blocking	CLPLL50/51N		1		1			
Propher failure			1		1			
Negative sequence / unbalance	46	1	1	1	1	1		
Thermal overload	49RMS		· ·	2	2	2	_	
Phase undercurrent	37					1		
Excessive starting time, locked rotor	48/51LR/14					1		
Starts per hour	66					1		
Positive sequence undervoltage	27D/47						2	2
Remanent undervoltage	27R						1	1
Phase-to-phase undervoltage	27						2	2
Phase-to-neutral undervoltage	27S						1	1
Phase-to-phase overvoltage	59						2	2
Neutral voltage displacement	59N						2	2
Overfrequency	81H						1	1
Underfrequency	81L						2	2
Rate of change of frequency	81R			_				1
Recloser (4 cycles)	79							
Thermostat / Buchholz	26/63							
Temperature monitoring (8 RTDs)	38/49T							
Metering								
Phase current I1, I2, I3 RMS, residual current I0				•				
Demand current I1, I2, I3, peak demand current I	M1, IM2, IM3			•				
Voltage U21, U32, U13, V1, V2, V3, residual voltage V0								
Positive sequence voltage Vd / rotation direction								
Frequency								
Temperature								
Network and machine diagnosi	S							
Tripping current TripI1, TripI2, TripI3, TripI0				•				
Unbalance ratio / negative sequence current li				•				
Disturbance recording				•			•	
Thermal capacity used								
Remaining operating time before overload trippin	g			•				
Waiting time after overload tripping				•				
Running hours counter / operating time								
Starting current and time								
Start inhibit time								
Number of starts before inhibition		_						
Cable arcing fault detection			•					
Switchgear diagnosis								
Cumulative breaking current		•	•			•	_	
Trip circuit supervision								
Number of operations, operating time, charging ti	me							
Control and monitoring	ANSI code							
Circuit breaker / contactor control ⁽¹⁾	94/69							
Latching / acknowledgement	86							
Logic discrimination	68							
Switching of groups of settings		(2)	(2)	(2)	(2)	(2)		
Annunciation	30			•				•
Additional modules								
8 temperature sensor inputs - MET148-2 module								
1 low level analog output - MSA141 module								
Logic inputs/outputs - MES114/MES114E/MES114F (10I/4O) module								
Communication interface - ACE949-2, ACE959, ACE937, ACE969TP-2, AC	E969FO-2, ECI850							

standard,
 according to parameter setting and MES114/MES114E/MES114F or MET148-2 input/output module options.
 (1) For shunt trip unit or undervoltage trip unit.
 (2) Exclusive choice between logic discrimination and switching from one 2-relay group of settings to another 2-relay group.
 (3) Performs Sepam B20 functions.
 (4) Applications S24 and T24 perform the functions of applications S23 and T23 respectively.

Selection table Sepam series 40

		Out	-1-1-									Tues				Made		Companyation
Brotaction	ANSLoodo	Sub	Static	on 844	SE4	642	852	642	852	644	SE4	TAO	TEO	ner TA2	TEO	MOTO	Dr Maa	Generator
Phase overcurrent	50/51	340	350	34 1	351	342	352	343	355	344	354	140	1 50	142	152		IVI4 I	4
Phase overcurrent cold	CLPU 50/51	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
load pick-up / blocking																		
Voltage-restrained overcurrent	50V/51V	4	4	4	4	4	1	4	1	4	1	4	4	1	1	4	4	1
Earth Iaut / Sensitive earth Iaut	50G/51G	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Earth fault cold load pick-up /	CLPU 50/51N		4		4		4		4		4		4		4			
blocking	5005																	
Breaker failure	50BF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Directional phase overcurrent	67	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Directional earth fault	67N/67NC			2	2	2	2	2	2					2	2		2	
Directional active overpower	32P			1	1	1	1	1	1								1	1
Directional reactive overpower	32Q/40															-	1	1
I hermal overload	49RMS											2	2	2	2	2	2	2
Excessive starting time	57															1	1	
locked rotor	48/51LR/14																	
Starts per hour	66															1	1	
Positive sequence undervoltage	27D															2	2	
Remanent undervoltage	27R	-										-				1	1	
	27/275	2	2	2	2	2	2			2	2	2	2	2	2	2	2	2
Neutral voltage displacement	59 59N	2	2	2	2	2	2			2	2	2	2	2	2	2	2	2
Negative sequence overvoltage	47	1	1	1	1	1	1			1	1	1	1	1	1		1	1
Overfrequency	81H	2	2	2	2	2	2			· · ·		2	2	2	2		2	2
Underfrequency	81L	4	4	4	4	4	4					4	4	4	4		4	4
Recloser (4 cycles)	79																	
Temperature monitoring	38/49T											Ц	Ш	Ц	Ц	Ш	Ц	
Thermostat / Buchholz	26/63											_		_				
Broken conductor	16PC		1		1		1		1		1	<u> </u>	1	<u> </u>	1			
Motoring	4080		1		1		1		1		1		1		i.			
Phase current 11, 12, 13 PMS, resid	tual current IO	-	-	-	-	-										-		-
Demand current 11, 12, 13 rule, resid	mand current	-					_					-		-	-	-	_	_
IM1, IM2, IM3		-	•	•	-	-	-	-	-	•	-	•				-	•	•
Voltage U21, U32, U13, V1, V2, V	3,			-	-	-												
residual voltage V0															_			
Positive sequence voltage Vd / rol	ation direction	•	•	•	•	•			•	•	•		•				•	•
Frequency																		
Active, reactive and apparent pow	er P, Q, S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Peak demand power PM, QM, pov	wer factor	-	-	-	-		-	_	-	-	-	-	-	-		-	-	-
Calculated active and reactive ene	ergy						•										•	
(±vv.11, ±val.11)																		
(+W h + varh)	se counting																	
Temperature																		
Network and machine	diagnosis																	
Tripping context																		
Tripping current TripI1, TripI2, Trip	l3, Tripl0																	
Unbalance ratio / negative sequer	ice current li	-														-		-
Phase displacement 40, 41, 42, 4	/3	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Thermal capacity used		-					-					-	-	-	-	-	-	-
Remaining operating time before of	overload tripping																	
Waiting time after overload tripping	g																	
Running hours counter / operating	time											-		-		-		•
Cable arcing fault detection																-	-	
Fault locator	21FL	-	-		-		-		-		-	-	-	-		_		
Start inhibit time, number of starts	before inhibition																	
Switchgear diagnosis																		
Cumulative breaking current																		
Trip circuit supervision																		
Number of operations, operating tin	ne, charging time							<u> </u>										
Control and		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Control and	ANDICOUE																	
monitoring	0.4/00	-	_	_	_	_	_	_	_	_	-	-	_	_	_	-	_	_
Latching / acknowledgement	94/09 86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Logic discrimination	68	-			-		-			-		-	-	_	-	-	_	
Switching of groups of settings																		
Annunciation	30																	
Logic equation editor																		•
Additional modules	440.0											-	_	-	-	-	-	
8 temperature sensor inputs - MET	148-2 module (2)							-						<u> </u>	<u> </u>			
Logic inputs/outputs -	THOULE	-						-				_			_	_	_	
MES114/MES114E/MES114F (10	I/40) module																	
Communication interface - ACE94	9-2, ACE959,																	
ACE937, ACE969TP-2, ACE969F	U-2 , ACE850 TP,																	
ACE000FO 01 EC1800																		

a standard, □ according to parameter setting and MES114/MES114E/MES114F or MET148-2 input/output module options. (1) For shunt trip unit or undervoltage trip unit. (3) Exclusive choice, phase-to-neutral voltage or phase-to-phase voltage for each of the 2 relays.

Sensor inputs

Each Sepam series 20 or Sepam series 40 has analog inputs that are connected to the measurement sensors required for the application.

Sepam series 20 sensor inputs

	S20, S24	T20, T24, M20	B21, B22
Phase current inputs	3	3	0
Residual current input	1	1	0
Phase voltage inputs	0	0	3
Residual voltage input	0	0	1
Temperature inputs (on MET148-2 module)	0	8	0

Sepam T20 sensor inputs.

S40, S41, S42, S43,T40, T42, T50, T52,S44, S50, S51, S52,M40, M41, G40

Sepam series 40 sensor inputs

	S44, S50, S51, S52, S53, S54		52, M40,	M40, M41, G40	
Phase current inputs	3	3		3	
Residual current input	1	1		1	
Phase voltage inputs	2	3	2	3	
Residual voltage input	1	0	1	0	
Temperature inputs (on MET148-2 module)	0	0		2 x 8	

Sepam M41 sensor inputs.

General settings

The general settings define the characteristics of the measurement sensors connected to Sepam and determine the performance of the metering and protection functions used. They are accessed via the SFT2841 setting software "General Characteristics", "CT-VT Sensors" and "Particular characteristics" tabs.

Gene	eral settings	Selection	Sepam series 20	Sepam series 40
In	Rated phase current	2 or 3 CT 1 A / 5 A	1 A to 6250 A	1 A to 6250 A
(sensor primary current)		3 LPCTs	25 A to 3150 A ⁽¹⁾	25 A to 3150 A ⁽¹⁾
lb	Base current, according to rated power of equipment		0.4 to 1.3 ln	0.2 to 1.3 In
In0	Rated residual current	Sum of 3 phase currents	See In rated phase current	See In rated phase current
		CSH120 or CSH200 core balance CT	2 A or 20 A rating	2 A, 5 A or 20 A rating
		1 A/5 A CT + CSH30 interposing ring CT	1 A to 6250 A	1 A to 6250 A (In0 = In)
		1 A/5 A CT + CSH30 interposing ring CT Sensitivity x10	-	1 A to 6250 A (In0 = In/10)
		Core balance CT + ACE990 (the core balance CT ratio 1/n must be such that 50 y n y 1500)	According to current monitored and use of ACE990	According to current monitored and use of ACE990
Unp	Rated primary phase-to-phase voltage (Vnp: rated primary phase-to-neutral voltage Vnp = Unp/ $\sqrt{3}$)		220 V to 250 kV	220 V to 250 kV
Uns	Rated secondary phase-to-phase voltage	3 VTs: V1, V2, V3	90 V to 230 V in steps of 1 V	90 V to 230 V in steps of 1 V
		2 VTs: U21, U32	90 V to 120 V in steps of 1 V	90 V to 120 V in steps of 1 V
		1 VT: V1	90 V to 120 V in steps of 1 V	90 V to 120 V in steps of 1 V
Uns0	Secondary zero sequence voltage for primary zero sequence voltage Unp/ $\sqrt{3}$		Uns/3 or Uns/ $\sqrt{3}$	Uns/3 or Uns/ $\sqrt{3}$
	Rated frequency		50 Hz or 60 Hz	50 Hz or 60 Hz
	Integration period (for demand current and peak demand current and power)		5, 10, 15, 30, 60 mn	5, 10, 15, 30, 60 mn
	Pulse-type accumulated energy meter	Increments active energy	-	0.1 kW.h to 5 MW.h
		Increments reactive energy	-	0.1 kvar.h to 5 Mvar.h

(1) In values for LPCT, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Description

Metering

Sepam is a precision metering unit.

All the metering and diagnosis data used for commissioning and required for the operation and maintenance of your equipment are available locally or remotely, expressed in the units concerned (A, V, W, etc.).

Phase current

RMS current for each phase, taking into account harmonics up to number 13. Different types of sensors may be used to meter phase current:

- 1 A or 5 A current transformers
- LPCT type current sensors.

Residual current

Two residual current values are available depending on the type of Sepam and sensors connected to it:

- residual currents I0S, calculated by the vector sum of the 3 phase currents
 measured residual current I0.
- Different types of sensors may be used to measure residual current:
- CSH120 or CSH200 specific core balance CT
- conventional 1 A or 5 A current transformer
- any core balance CT with an ACE990 interface.

Demand current and peak demand currents

Demand current and peak demand currents are calculated according to the 3 phase currents I1, I2 and I3:

■ demand current is calculated over an adjustable period of 5 to 60 minutes

peak demand current is the greatest demand current and indicates the current drawn by peak loads.

Peak demand currents may be cleared.

Voltage and frequency

The following measurements are available according to the voltage sensors connected:

- phase-to-neutral voltages V1, V2, V3
- phase-to-phase voltages U21, U32, U13
- residual voltage V0
- positive sequence voltage Vd and negative sequence voltage Vi
- frequency f.

Power

Powers are calculated according to the phase currents I1, I2 and I3:

- active power
- reactive power
- apparent power
- power factor (cos φ).

Power calculations is based on the 2 wattmeter method.

The 2 wattmeter method is only accurate when there is no residual current and it is not applicable if the neutral is distributed.

Peak demand powers

The greatest demand active and reactive power values calculated over the same period as the demand current.

The peak demand powers may be cleared.

Energy

■ 4 accumulated energies calculated according to voltages and phase currents I1, I2 and I3 measured: active energy and reactive energy in both directions

■ 1 to 4 additional accumulated energy meters for the acquisition of active or reactive energy pulses from external meters.

Temperature

Accurate measurement of temperature inside equipment fitted with Pt100, Ni100 or Ni120 type RTDs, connected to the optional remote MET148-2 module.

Description

Machine diagnosis assistance

Sepam assists facility managers by providing:

data on the operation of their machines

 predictive data to optimize process management
 useful data to facilitate protection function setting and implementation.

Thermal capacity used

Equivalent temperature buildup in the machine, calculated by the thermal overload protection function. Displayed as a percentage of rated thermal capacity.

Remaining operating time before overload tripping

Predictive data calculated by the thermal overload protection function.

The time is used by facility managers to optimize process management in real time by deciding to:

interrupt according to procedures

 continue operation with inhibition of thermal protection on overloaded machine.

Waiting time after overload tripping

Predictive data calculated by the thermal overload protection function.

Waiting time to avoid further tripping of thermal overload protection by premature

re-energizing of insufficiently cooled down equipment.

Running hours counter / operating time

Equipment is considered to be running whenever a phase current is over 0.1 lb.

Cumulative operating time is given in hours.

Motor starting / overload current and time

A motor is considered to be starting or overloaded when a phase current is over

1.2 lb. For each start / overload, Sepam stores:

maximum current drawn by the motor

starting / overload time

The values are stored until the following start / overload.

Number of starts before inhibition/start inhibit time

Indicates the number of starts still allowed by the starts per hour protection function and, if the number is zero, the waiting time before starting is allowed again.

Network diagnosis assistance

Sepam provides network power quality metering functions, and all the data on network disturbances detected by Sepam are recorded for analysis purposes.

Tripping context

Storage of tripping currents and I0, Ii, U21, U32, U13, V0, Vi, Vd, f, P and Q values when tripping occurs. The values for the last five trips are stored.

Tripping current

Storage of the 3 phase currents and earth fault current at the time of the last Sepam trip order, to indicate fault current.

The values are stored in the tripping contexts.

Negative sequence / unbalance

Negative sequence component of phase currents I1, I2 and I3, indicating the degree of unbalance in the power supplied to the protected equipment.

Phase displacement

phase displacement Φ1, Φ2, Φ3 between phase currents I1, I2, I3 and voltages V1, V2, V3 respectively

phase displacement Φ0 between residual current and residual voltage.

Disturbance recording

Recording triggered by user-set events:

- all sampled values of measured currents and voltages
- status of all logic inputs and outputs
- logic data: pick-up, ...

Characteristics	Sepam series 20	Sepam series 40
Number of recordings in COMTRADE format	2	Adjustable from 1 to 19
Total duration of a recording	86 periods (1.72 s at 50 Hz, 1.43 s at 60 Hz)	Adjustable from 1 to 10 s. The total of all the records plus one must not be more than 20 s at 50 Hz and 16 s at 60 Hz
Number of samples per period	12	12
Duration of recording prior to occurrence of the event	Adjustable from 0 to 86 periods	Adjustable from 0 to 99 periods
Recorded data	 currents or voltages logic inputs pick up logic output O1. 	 currents and voltages logic inputs pick up logic outputs O1 to O4.

Fault location

The network diagnosis function 21FL calculates the distance to a located fault in a medium voltage network. It is associated with the following protection functions:

Single-phase fault - 50N/51N or 67N,
 Multi-phase fault - 50/51 or 67.

Only units with protection functions configured for circuit breaker tripping activate the Fault locator function.

The fault resistance is also calculated. The results of the calculation, as well as information on the type of fault located and the faulty phases are displayed and saved in the tripping context. The fault distance can be calculated in miles or kilometers. The 21FL function is designed to operate on an incoming feeder on a network with several feeders.

Data on the last five faults is saved.

Description

Sepam self-diagnosis

Sepam includes a number of self-tests carried out in the base unit and optional modules. The purpose of the self-tests is to:

 detect internal failures that may cause nuisance tripping or failed fault tripping

put Sepam in fail-safe position to avoid any unwanted operation

alert the facility manager of the need for maintenance operations.

Internal failure

Two categories of internal failures are monitored: major failures: Sepam shutdown (to fail-safe position).

The protection functions are inhibited, the output relays are forced to drop out and the "Watchdog" output indicates Sepam shutdown

minor failures: downgraded Sepam operation.
 Sepam's main functions are operational and equipment protection is ensured.

Detection of plugged connectors

The system checks that the current or voltage sensors are plugged in. A missing connector is a major failure.

Configuration checking

The system checks that the optional modules configured are present and working correctly. The absence or failure of a remote module is a minor failure, the absence or failure of a logic input/output module is a major failure.

Switchgear diagnosis assistance

Switchgear diagnosis data give facility managers information on:

- mechanical condition of breaking device
- Sepam auxiliaries

and assist them for preventive and curative switchgear maintenance actions. The data are to be compared to switchgear manufacturer data.

ANSI 60/60FL - CT/VT supervision

Used to monitor the entire metering chain:

- CT and VT sensors
- connection
- Sepam analog inputs.
- Monitoring includes:
- consistency checking of currents and voltages measured
- acquisition of phase or residual voltage transformer protection fuse blown contacts.

In the event of a loss of current or voltage measurement data, the assigned protection functions may be inhibited to avoid nuisance tripping.

ANSI 74 - Trip circuit supervision

- To detect trip circuit circuit failures, Sepam monitors:
- shunt trip coil connection
- matching of breaking device open/closed position contacts
- execution of breaking device open and close orders.
- The trip circuit is only supervised when connected as shown below.

Connection for shunt trip coil monitoring.

Connection for undervoltage trip coil monitoring.

Cumulative breaking current

Six cumulative currents are proposed to assess breaking device pole condition:

- total cumulative breaking current
- cumulative breaking current between 0 and 2 In
- cumulative breaking current between 2 In and 5 In
- cumulative breaking current between 5 In and 10 In
- cumulative breaking current between 10 In and 40 In
- cumulative breaking current > 40 In.

Each time the breaking device opens, the breaking current is added to the cumulative total and to the appropriate range of cumulative breaking current. Cumulative breaking current is given in (kA)².

Number of operations

Cumulative number of opening operations performed by the breaking device.

Circuit breaker operating time and charging time

Used to assess the condition of the breaking device operating mechanism.

Characteristics

Functions	Measurement	Accuracy ⁽¹⁾	Accuracy ⁽¹⁾	MSA141	Saving
	range	Sepam series 20	Sepam series 40		
Motoring	range				
Dhase surrent	0 1 to 10 lp (3)	+1 0/	+0 5 %	-	1
Pridse current Calculated	0.1 to 40 ln	±1 %	±0.3 %	-	
Measured	0.1 to 20 lp0	±1 %	±1 %	-	
Domand aurrant	0.1 to 20 Ino	±1 %	±0.5.9/	-	
Denialid culterit	0.1 to 40 In	±1 %	±0.5 %		
	0.1 (0 40 III	±1 %	10.5 %	_	
Phase to poutrol voltage	0.00 to 1.2 Unp	±1 %	10.5 %		
Priase-to-neutral voltage	0.06 to 1.2 Viip	±1 %	±0.5 %	-	
	0.04 to 3 Vip	1 70 1 5 0/	±1 %		
Positive sequence voltage	0.05 to 1.2 Vip	±3 %	±2 %		
	0.05 to 1,2 vnp	-	±2 %	_	
Frequency Separations 20		±0.05 HZ	-	-	
Frequency Sepam series 40	25 t0 65 HZ	-	±0.02 Hz	-	
Active power	0.015 Sh ⁽²⁾ to 999 MW	-	±1%	•	
Reactive power	0.015 Sh ⁽²⁾ to 999 Mvar	-	±1 %	•	
Apparent power	0.015 Sh ⁽²⁾ to 999 MVA	-	±1%	•	
Peak demand active power	0.015 Sn ⁽²⁾ to 999 MW	-	±1 %		
Peak demand reactive power	0.015 Sn ⁽²⁾ to 999 Mvar	-	±1 %		
Power factor	-1 to +1 (CAP/IND)	-	±1 %		
Calculated active energy	0 to 2.1.10 ⁸ MW.h	-	±1 % ±1 digit		
Calculated reactive energy	0 to 2.1.10 ⁸ Mvar.h	-	±1 % ±1 digit		
Temperature	-30 to +200 °C or -22 to +392 °F	±1 °C from +20 to +140 °C	±1 °C from +20 to +140 °C	•	
Network diagnosis assistance	·				
Tripping context					
Phase tripping current	0.1 to 40 In	±5 %	±5 %		
Earth fault tripping current	0.1 to 20 In0	±5 %	±5 %		
Negative sequence / unbalance	10 to 500 % of Ib	±2 %	±2 %		
Phase displacement α0 (between V0 and I0)	0 to 359°	-	±2°		
Phase displacement Φ1, Φ2, Φ3 (between V and I)	0 to 359°	-	±2°		
Disturbance recording	-	-	-		(⁴)
Machino operating assistance		1	1		
Thermal experit used	0 to 900 %	+1.0/	+1 0/	1	1
	(100 % for I phase = Ib)	±1 70	II 70	•	
Remaining operating time before overload tripping	0 to 999 mn	±1 mn	±1 mn		
Waiting time after overload tripping	0 to 999 mn	±1 mn	±1 mn		
Running hours counter / operating time	0 to 65535 hours	±1 % or ±0.5 h	±1 % or ±0.5 h		
Starting current	S20 : 0,5 lb to 24 ln S40 : 1,2 lb to 24 ln	±5 %	±5 %		
Starting time	0 to 300 s	±300 ms	±300 ms		
Number of starts before inhibition	0 to 60	1	1		
Start inhibit time	0 to 360 mn	±1 mn	±1 mn		
Cooling time constant	5 to 600 mn	-	±5 mn		
Switchgear diagnosis assistance					
Cumulative breaking current	0 to 65535 kA ²	±10 %	±10 %		
Number of operations	0 to 4.10 ⁹	1	1		
Operating time	20 to 100 ms	±1 ms	±1 ms		
Charging time	1 to 20 s	±0.5 s	±0.5 s		
available on MSA141 analog output module, according to setup.					
□ saved in the event of auxiliary supply outage. (1) Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, $\cos \varphi > 0.8$. (2) Sn: apparent power, = $\sqrt{3}$.Unp.In. (3) Measurement up to 0.02 In for information purpose. (4) Series 40 only.					

Tripping characteristic of ANSI 67N/67NC type 1 protection (characteristic angle $\theta 0 \neq 0^\circ$).

Tripping characteristic of ANSI 67N/67NC type 2 protection (characteristic angle $\theta 0 \neq 0^\circ$).

Tripping characteristic of ANSI 67N/67NC type 3 protection

Directional current protection

ANSI 67 - Directional phase overcurrent

Phase-to-phase short-circuit protection, with selective tripping according to fault current direction.

It comprises a phase overcurrent function associated with direction detection, and picks up if the phase overcurrent function in the chosen direction (line or busbar) is activated for at least one of the 3 phases

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- choice of tripping direction
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with voltage memory to make the protection insensitive to loss of polarization
- voltage at the time of the fault
- with or without timer hold.

ANSI 67N/67NC - Directional earth fault

Earth fault protection, with selective tripping according to fault current direction. 3 types of operation:

- type 1: the protection function uses the projection of the I0 vector
- type 2: the protection function uses the I0 vector magnitude with half-plane tripping zone

type 3: the protection function uses the I0 vector magnitude with angular sector tripping zone

ANSI 67N/67NC type 1

Directional earth fault protection for impedant, isolated or compensated neutral systems, based on the projection of measured residual current.

Type 1 characteristics

- 2 groups of settings ■ instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- characteristic projection angle
- no timer hold

■ with voltage memory to make the protection insensitive to recurrent faults in compensated neutral systems.

ANSI 67N/67NC type 2

Directional overcurrent protection for impedance and solidly earthed systems, based on measured or calculated residual current.

It comprises an earth fault function associated with direction detection, and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

Type 2 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- choice of tripping direction
- with or without timer hold.

ANSI 67N/67NC type 3

Directional overcurrent protection for distribution networks in which the neutral earthing system varies according to the operating mode, based on measured residual current.

It comprises an earth fault function associated with direction detection (angular sector tripping zone defined by 2 adjustable angles), and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

This protectionfunction complies with the CEI 0-16 Italian specification.

Type 3 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- no timer hold

Current protection functions

ANSI 50/51 - Phase overcurrent

Phase-to-phase short-circuit protection, sensitive to the highest phase current measured.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with or without timer hold. The protection

incorporates a harmonic 2 restraint which can be used to set the protection Is set point close to the CT rated current In, including when a transformer closes. This restraint can be activated by parameter setting. The harmonic 2 restraint is valid as long as the current

is less than half the minimum short-circuit current lsc of the network downstream of the protection.

With Sepam series 40, tripping can be confirmed or unconfirmed, according to parameter setting:

unconfirmed tripping: standard

tripping confirmed by negative sequence overvoltage protection (ANSI 47, unit 1), as backup for distant 2-phase short-circuits

■ tripping confirmed by undervoltage protection (ANSI 27, unit 1), as backup for phase-to-phase shortcircuits in networks with low short-circuit power.

ANSI CLPU 50/51 - Phase overcurrent cold load pick-up/blocking (Cold Load Pick-Up I)

The Cold Load Pick-Up I or CLPU 50/51 function avoids nuisance tripping of the phase overcurrent protection (ANSI 50/51), during energization after a long outage.

Depending on the installation characteristics, these operations can actually generate transient inrush currents likely to exceed the protection set points. These transient currents may be due to:

- the power transformer magnetizing currents,
- the motor starting currents,

 the simultaneous resetting of all the loads in the installation (air conditioning, heating, etc.)

In principle, the protection settings should be defined so as to avoid tripping due to these transient currents. However, if these settings result in inadequate sensitivity levels or delays that are too long, the CLPU 50/51 function is used to increase or inhibit set points temporarily after energization.

ANSI 50N/51N or 50G/51G - Earth fault

Earth fault protection based on measured or calculated residual current values: ANSI 50N/51N: residual current calculated or measured by 3 phase current sensors

- ANSI 50G/51G: residual current measured directly by a specific sensor.
- Characteristics
- 2 groups of settings
- Definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with or without timer hold

■ second harmonic restraint to ensure stability during transformer energizing, activated by parameter setting.

ANSI CLPU 50N/51N- Earth fault cold load pick-up/blocking (Cold Load Pick-Up I0)

The Cold Load Pick-Up 10 or CLPU 50N/51N function avoids nuisance tripping of the earth fault protection (ANSI 50N/51N) during energization after a long outage. Depending on the installation characteristics, such operations can actually generate transient inrush currents. If the residual current measurement is based on the sum of the 3 phase CTs, the aperiodic component of these transient currents can result in saturation of the phase CTs. This can lead to measurement of an incorrect residual current likely to exceed the protection set points. These transient currents are essentially due to:

the power transformer magnetizing currents,

the motor starting currents

In principle, the protection settings should be defined so as to avoid tripping due to these transient currents. However, if these settings result in inadequate sensitivity levels or delays that are too long, the CLPU 50N/51N function is used to increase or inhibit set points temporarily after energization.

If the residual current is measured by a correctly installed CT, there is less risk of measuring an incorrect residual current. In this case, there is no need to use the CLPU 50N/51N function.

ANSI 50BF - Breaker failure

If a breaker fails to be triggered by a tripping order, as detected by the non-extinction of the fault current, this backup protection sends a tripping order to the upstream or adjacent breakers.

ANSI 46 - Negative sequence / unbalance

Protection against phase unbalance, detected by the measurement of negative sequence current:

■ sensitive protection to detect 2-phase faults at the ends of long lines

protection of equipment against temperature build-up, caused by an unbalanced power supply, phase inversion or loss of phase, and against phase current unbalance.

Characteristics

- Sepam series 20:
- □ 1 definite time (DT) curve
- □ 1 specific Schneider IDMT curve.
- Sepam series 40:
- □ 1 definite time (DT) curve
- □ 7 IDMT curves: 3 IEC curves, 3 IEEE curves and 1 specific Schneider curve.

ANSI 46BC - Broken conductor detection

Broken conductor detection protection indicates an open phase condition on the circuit in a medium voltage radial network.

- This may be caused by one of the following:
- broken conductor in contact with the ground at the source side
- broken conductor in contact with the ground at the load side
- open circuit (conductor not in contact with the ground) caused by:
- □ broken conductor
- □ blown fuse
- □ circuit breaker pole failure.

Current protection functions (continued)

ANSI 49RMS - Thermal overload

Protection against thermal damage caused by overloads on machines (transformers, motors or generators).

The thermal capacity used is calculated according to a mathematical model which takes into account:

- current RMS values
- ambient temperature
- negative sequence current, a cause of motor rotor temperature rise.

The thermal capacity used calculations may be used to calculate predictive data for process control assistance.

The protection may be inhibited by a logic input when required by process control conditions.

Characteristics

- 2 groups of settings
- 1 adjustable alarm set point
- 1 adjustable tripping set point

 adjustable initial thermal capacity used setting, to adapt protection characteristics to fit manufacturer's thermal withstand curves

 equipment heating and cooling time constants.
 With Sepam series 40, the cooling time constant may be calculated automatically based on measurement of the equipment temperature by a sensor.

Recloser

ANSI 79

Automation device used to limit down time after tripping due to transient or semi-permanent faults on overhead lines. The recloser orders automatic reclosing of the breaking device after the time delay required to restore the insulation has elapsed.

Recloser operation is easy to adapt for different operating modes by parameter setting.

Characteristics

■ 1 to 4 reclosing cycles, each cycle has an adjustable dead time

 adjustable, independent reclaim time and safety time until recloser ready time delays

 cycle activation linked to instantaneous or timedelayed short-circuit protection function (ANSI 50/51, 50N/51N, 67, 67N/67NC) outputs by parameter setting

inhibition/locking out of recloser by logic input.

Directional power protection functions

ANSI 32P - Directional active overpower

Two-way protection based on calculated active power, for the following applications:

 active overpower protection to detect overloads and allow load shedding

- reverse active power protection:
- against generators running like motors when the

generators consume active power

□ against motors running like generators when the motors supply active power.

ANSI 32Q/40 - Directional reactive overpower

Two-way protection based on calculated reactive power to detect field loss on synchronous machines:

 reactive overpower protection for motors which consume more reactive power with field loss

reverse reactive overpower protection for generators which consume reactive power with field loss.

Machine protection functions

ANSI 37 - Phase undercurrent

Protection of pumps against the consequences of a loss of priming by the detection of motor no-load operation.

It is sensitive to a minimum of current in phase 1, remains stable during breaker tripping and may be inhibited by a logic input.

ANSI 48/51LR/14 - Locked rotor / excessive starting time

Protection of motors against overheating caused by:

■ excessive motor starting time due to overloads (e.g. conveyor) or insufficient supply voltage.

The reacceleration of a motor that is not shut down, indicated by a logic input, may be considered as starting.

- locked rotor due to motor load (e.g. crusher):
- □ in normal operation, after a normal start

□ directly upon starting, before the detection of excessive starting time, with detection of locked rotor by a zero speed detector connected to a logic input, or by the underspeed function.

ANSI 66 - Starts per hour

Protection against motor overheating caused by:

■ too frequent starts: motor energizing is inhibited when the maximum allowable number of starts is reached, after counting of:

□ starts per hour (or adjustable period)

□ consecutive motor hot or cold starts (reacceleration of a motor that is not shut down, indicated by a logic input, may be counted as a start)

■ starts too close together in time: motor re-energizing after a shutdown is only allowed after an adjustable waiting time.

ANSI 50V/51V - Voltage-restrained overcurrent

Phase-to-phase short-circuit protection, for generators. The current tripping set point is voltage-adjusted in order to be sensitive to faults close to the generator which cause voltage drops and lowers the short-circuit current.

Characteristics

■ instantaneous or time-delayed tripping

definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
 with or without timer hold.

ANSI 26/63 - Thermostat/Buchholz

Protection of transformers against temperature rise and internal faults via logic inputs linked to devices integrated in the transformer.

ANSI 38/49T - Temperature monitoring

Protection that detects abnormal temperature build-up by measuring the temperature inside equipment fitted with sensors:

- transformer: protection of primary and secondary windings
- motor and generator: protection of stator windings and bearings.
- Characteristics
- Sepam series 20: 8 Pt100, NI100 or Ni120 type RTDs
- Sepam series 40: 16 Pt100. NI100 or Ni120 type RTDs
- 2 adjustable independent set points for each RTD (alarm and trip).

Voltage protection functions Frequency protection functions

ANSI 27D - Positive sequence undervoltage

Protection of motors against faulty operation due to insufficient or unbalanced network voltage, and detection of reverse rotation direction.

ANSI 27R - Remanent undervoltage

Protection used to check that remanent voltage sustained by rotating machines has been cleared before allowing the busbar supplying the machines to be re-energized, to avoid electrical and mechanical transients.

ANSI 27 - Undervoltage

Protection of motors against voltage sags or detection of abnormally low network voltage to trigger automatic load shedding or source transfer.

Works with phase-to-phase voltage (Sepam series 20 and Sepam series 40) or phase-to-neutral voltage (Sepam series 40 only), each voltage being monitored separately.

ANSI 59 - Overvoltage

Detection of abnormally high network voltage or checking for sufficient voltage to enable source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

ANSI 59N - Neutral voltage displacement

Detection of insulation faults by measuring residual voltage in isolated neutral systems.

ANSI 47 - Negative sequence overvoltage

Protection against phase unbalance resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage.

ANSI 81H - Overfrequency

Detection of abnormally high frequency compared to the rated frequency, to monitor power supply quality.

ANSI 81L - Underfrequency

Detection of abnormally low frequency compared to the rated frequency, to monitor power supply quality.

The protection may be used for overall tripping or load shedding. Protection stability is ensured in the event of the loss of the main source and presence of remanent voltage by a restraint in the event of a continuous decrease of the frequency, which is activated by parameter setting.

ANSI 81R - Rate of change of frequency

Protection function used for fast disconnection of a generator or load shedding control. Based on the calculation of the frequency variation, it is insensitive to transient voltage disturbances and therefore more stable than a phase-shift protection function.

Disconnection

In installations with autonomous production means connected to a utility, the "rate of change of frequency" protection function is used to detect loss of the main system in view of opening the incoming circuit breaker to:

- protect the generators from a reconnection without checking synchronization
- avoid supplying loads outside the installation.

Load shedding

The "rate of change of frequency" protection function is used for load shedding in combination with the underfrequency protection to:

- either accelerate shedding in the event of a large overload
- or inhibit shedding following a sudden drop in frequency due to a problem that should not be solved by shedding.

Protection Main characteristics

2

Detection of restriking faults with adjustable timer hold.

Current IDMT tripping curves

Multiple IDMT tripping curves are offered, to cover most applications:

- IEC curves (SIT, VIT/LTI, EIT)
- IEEE curves (MI, VI, EI)
- usual curves (UIT, RI, IAC).

The curve equations are given page 105.

Setting of IDMT tripping curves, time delay T or TMS factor

The time delays of current IDMT tripping curves (except for customized and RI curves) may be set as follows:

- time T, operating time at 10 x Is
- TMS factor, factor shown as T/b (see curve equation page 105).

Timer hold

The adjustable timer hold T1 is used for:

detection of restriking faults (DT curve)

■ coordination with electromechanical relays (IDMT curve).

Timer hold may be inhibited if necessary.

2 groups of settings

Phase-to-phase and phase-to-earth short-circuit protection

Each unit has 2 groups of settings, A and B, to adapt the settings to suit the network configuration.

The active group of settings (A or B) is set by a logic input or the communication link.

Example of use: normal / backup mode network

■ group A for network protection in normal mode, when the network is supplied by the utility

group B for network protection in backup mode, when the network is supplied by a backup generator.

Thermal overload for machines

Each unit has 2 groups of settings to protect equipment that has two operating modes.

Examples of use:

 transformers: switching of groups of settings by logic input, according to transformer ventilation operating mode, natural or forced ventilation (ONAN or ONAF)

motors: switching of groups of settings according to current set point, to take into account the thermal withstand of motors with locked rotors.

Summary table

Characteristics	Protection functions
2 groups of settings A and B	50/51, 50N/51N, 67, 67N/67NC
2 groups of settings, operating modes 1 and 2	49RMS Machine
IEC IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
IEEE IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
Usual IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2
Timer hold	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2

Protection Setting ranges

Functions	Settings		Time delays
ANSI 21FL - Fault locator			
Time to establish healthy state	1s to 99 mn		0.1 s to 300 s
Percentage of cable	0 to 30 %		·,
Distance unit Km or mile	Km or mile		
Direct line resistance	0,001 Ω/Km to 10 Ω/Km		
Direct line reactance	0,001 Ω/Km to 10 Ω/Km		
Direct cable resistance	0,001 Ω/Km to 10 Ω/Km		
Direct cable reactance	0,001 Ω/Km to 10 Ω/Km		
Zero sequence line resistance	0,001 Ω/Km to 10 Ω/Km		
Zero sequence line reactance	0,001 Ω/Km to 10 Ω/Km		
Zero sequence cable resistance	0,001 Ω/Km to 10 Ω/Km		
Zero sequence cable reactance	0,001 Ω/Km to 10 Ω/Km		
ANSI 27 - Phase-to-phase und	dervoltage		
	5 to 120 % of Unp		0.05 s to 300 s
ANSI 27D/47 - Positive seque	nce undervoltage		
	5 to 60 % of Unp		0.05 s to 300 s
ANSI 27R - Remanent underv	oltage		
	5 to 120 % of Unp		0.05 s to 300 s
ANSI 27S - Phase-to-neutral u	Indervoltage		
	5 to 120 % of Vnp		0.05 s to 300 s
ANSI 32P - Directional active	overpower		
Androzi Bircononaraonive	1 to 120 % of Sn (2)		0.1 s to 300 s
ANSI 320/40 - Directional read	ctive overnower		0.13103003
ANOI 32Q/40 - Directional read	E to 120 % of Sp (2)		0 1 a to 200 a
ANGI 27 Phase undersurrent	5 10 120 % 01 311 4		0.15105005
ANSI 57 - Plidse undercurrent			0.05 - 1- 200 -
			0.05 s to 300 s
ANSI 38/491 - Temperature m	onitoring (8 or 16 R I Ds)		
Alarm and trip set points	0 to 180 °C (or 32 to 356 °F)		
ANSI 46 - Negative sequence	/ unbalance		
Definite time	0.1 to 5 lb		0.1 s to 300 s
IDMT	0.1 to 0.5 lb (Schneider Electric) 0	.1 to 1 lb (IEC, IEEE)	0.1 s to 1 s
Tripping curve	Schneider Electric		
	IEC: SIT/A, LTI/B, VIT/B, EIT/C ⁽¹⁾		
	IEEE: MI (D), VI (E), EI (F) ⁽¹⁾		
ANSI 46BC - Broken Conduct	or		
li/ld set point	10 to 100 %		0.15 s to 300 s
ANSI 47 - Negative sequence	overvoltage		
	1 to 50 % of Unp		0.05 s to 300 s
ANSI 48/51LR/14 - Excessive	starting time, locked rotor		
	0.5 lb to 5 lb	ST starting time	0.5 s to 300 s
		LT and LTS time delays	0.05 s to 300 s
ANSI 49RMS - Thermal overlo	ad	Rate 1 and Rate 2	
Accounting for negative sequence co	mponent	0 - 2,25 - 4,5 - 9	
Time constant	Heating	Sepam serie 20 T1: 1 to 120 mn	
		Sepam serie 40 T1: 1 to 600 mn	
	Cooling	Sepam serie 20 T2: 1 to 600 mn	
		Sepam serie 40 T2: 5 to 600 mn	
Alarm and tripping set points		50 to 300 % of rated thermal capacity	
Cold curve modification factor		0 to 100 %	
Switching of thermal settings condition	ns	By logic input	
		By Is set point adjustable from 0.25 to 8 lb	
Maximum equipment temperature		60 to 200 °C (140 °F to 392 °F)	

(1) Sepam series 40 only. (2) Sn = $\sqrt{3}$.In.Unp.

Protection Setting ranges

Functions	Settings		Time delays
ANSI 50/51 - Phase overcurrent			
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
	RI	DT	
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
Is set point	0.1 to 24 In	Definite time	Inst ; 0.05 s to 300 s
	0.1 to 2.4 ln	IDMT	0.1 s to 12.5 s at 10 ls
Timer hold	Definite time (DT ; timer hold)		Inst ; 0.05 s to 300 s
	IDMT (IDMT ; reset time)		0.5 s to 20 s
Confirming (2)	None		
	By negative sequence overvoltage		
	By phase-to-phase undervoltage		
Second-harmonic set point	5 to 50 %		
CLPU 50/51 - Phase overcurrent	cold load pick-up/blocking		
Time before activation Tcold			0,1 to 300 s
Pick-up threshold CLPUs	10 to 100 % of In		
Global action CLPU 50/51	Blocking or multiplication of the set poi	int	
Action on unit x ANSI 50/51	OFF or ON		
Time delay T/x			100 ms to 999 mn
Multiplying factor M/x	100 to 999 % of Is		
ANSI 50BF - Breaker failure			
Presence of current	0.2 to 2 In		
Operating time	0.05 s to 300 s		
ANSI 50N/51N or 50G/51G - Eart	h fault / Sensitive earth fault		
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
	RI	DT	
	IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
Is0 set point	0.1 to 15 In0	Definite time	Inst ; 0.05 s to 300 s
	0.1 to 1 In0	IDMT	0.1 s to 12.5 s at 10 ls0
Timer hold	Definite time (DT ; timer hold)		Inst ; 0.05 s to 300 s
	IDMT (IDMT ; reset time)		0.5 s to 20 s
CLPU 50N/51N - Earth fault cold	load pick-up/blocking		
Time before activation Tcold			0,1 to 300 s
Pick-up threshold CLPUs	10 to 100 % of In0		
Global action CLPU 50N/51N	Blocking or multiplication of the set poi	int	
Action on unit x ANSI 50N/51N	OFF or ON		
Time delay T0/x			100 ms to 999 mn
Multiplying factor M0/x	100 to 999 % of Is0		
ANSI 50V/51V - Voltage-restrain	ed overcurrent		
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
	RI	DT	
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E). EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
Is set point	0.5 to 24 In	Definite time	Inst : 0.05 s to 300 s
F	0.5 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls
Timer hold	Definite time (DT : timer hold)		Inst : 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
	, , , , , , , , , , , , , , , , , , , ,		

(1) Tripping as of 1.2 ls.(2) Sepam series 40 only.

Protection Setting ranges

Functions		Settings		Time delays
ANSIE	Overvelterer (L. L. ev. L. N)			Time delays
ANSI 59 - OV	ervoltage (L-L ou L-N)		00.)/	0.05 - 1- 200 -
		50 to 150 % of Unp (or Vnp) if Uns < 2	08 V	0,05 s to 300 s
	50 to 135 % of Unp (or Vnp) if Uns ≥ 208 V			U,U5 S to 300 S
ANSI 59N - N	eutral voltage displacem	ent		
		2 to 80 % of Unp		0.05 s to 300 s
ANSI 66 - Sta	arts per hour			
Starts per period		1 to 60	Period	1 to 6 hr
Consecutive sta	ts	1 to 60	Time between starts	0 to 90 mn
ANSI 67 - Dir	ectional phase overcurre	nt		
		Tripping time delay	Timer hold	
Tripping curve		Definite time	DT	
		SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
		RI	DT	
		IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
		IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
		IAC: I, VI, EI	DT or IDMT	
Is set point		0.1 to 24 In	Definite time	Inst ; 0.05 s to 300 s
		0.1 to 2,4 In	IDMT	0.1 s to 12.5 s at 10 ls
Timer hold		Definite time (DT ; timer hold)		Inst ; 0.05 s to 300 s
		IDMT (IDMT ; reset time)		0.5 s to 20 s
Characteristic ar	ngle	30°, 45°, 60°		
ANSI 67N/67	NC type 1 - Directional ea	rth fault, according to 10 project	ion	
Characteristic ar	nale	-45°, 0°, 15°, 30°, 45°, 60°, 90°		
Is0 set point	0 -	0.1 to 15 In0	Definite time	Inst ; 0.05 s to 300 s
Vs0 set point		2 to 80 % of Un		
Memory time		T0mem time	0 ; 0.05 s to 300 s	
		V0mem validity set point	0 ; 2 to 80 % of Unp	
ANSI 67N/67	NC type 2 - Directional ea	rth fault, according to 10 magnit	ude with half-plan tripping z	one
Characteristic ar	ngle	-45°, 0°, 15°, 30°, 45°, 60°, 90°		
		Tripping time delay	Timer hold	
Tripping curve		Definite time	DT	
		SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
		RI	DT	
		IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
		IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
		IAC: I, VI, EI	DT or IDMT	
Is0 set point		0.1 to 15 In0	Definite time	Inst; 0.05 s to 300 s
VeQ est esint		0.1 to 1 In0	IDMI	0.1 s to 12.5 s at 10 ls0
VSU set point		2 to 80 % of Unp		Inst : 0.05 a to 200 a
Timer noid				0.5 s to 20 s
ANSI 67N/67	NC type 3 - Directional ea	rth fault according to 10 magnit	ude with angular sector trip	ning zone
Angle at start of		0° to 359°	ade with angular sector trip	pingzone
Angle at end of t	ripping zone	0° to 359°		
Is0 set point	CSH core balance CT (2 A rating)	0.1 A to 30 A	Definite time	Inst ; 0.05 to 300 s
	1 A CT (sensitive, In0 = 0.1 CT In)	0.05 to 15 In0 (min. 0.1 A)		
	Core balance CT + ACE990 (range 1)	0.05 to 15 In0 (min. 0.1 A)		
Vs0 set point		Calculated V0 (sum of 3 voltages)	2 to 80 % of Unp	
		Measured V0 (external VT)	0.6 to 80 % of Unp	
ANSI 81H - C	verfrequency			
Sepam series 20		50 to 53 Hz or 60 to 63 Hz		0.1 s to 300 s
Sepam series 40)	50 to 55 Hz or 60 to 65 Hz		0.1 s to 300 s
ANSI 81L - U	nderfrequency			
Sepam series 20		45 to 50 Hz or 55 to 60 Hz		0.1 s to 300 s
Sepam series 40) 	40 to 50 Hz or 50 to 60 Hz		0.1 s to 300 s
ANSI 81R - R	ate of change of frequen			
		U. I LU TU TIZ/S		IIISE, U. 15 S to 300 S

(1) Tripping as of 1.2 ls.

Control and monitoring

Description

Sepam performs all the control and monitoring functions required for electrical network operation:

■ the main control and monitoring functions are predefined and fit the most frequent cases of use. They are ready to use and are implemented by simple parameter setting after the necessary logic inputs / outputs are assigned.

 the predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options:
 customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages

□ logic equation editor, to adapt and complete the predefined control and monitoring functions (Sepam series 40 only)

□ creation of personalized messages for local annunciation (Sepam series 40 only).

Operating principle

The processing of each control and monitoring function may be broken down into 3 phases:

- acquisition of input data:
- □ results of protection function processing

□ external logic data, connected to the logic inputs of an optional MES114 input / output module

- remote control orders (TC) received via the Modbus communication link
- actual processing of the control and monitoring function
- utilization of the processing results:
- □ activation of output relays to control a device
- □ information sent to the facility manager:
- by message and/or LED on the Sepam display and SFT2841 software
- by remote indication (TS) via the Modbus communication link.

Logic inputs and outputs

The number of Sepam inputs / outputs must be adapted to fit the control and monitoring functions used.

The 4 outputs included in the Sepam base unit (series 20 or series 40) may be extended by adding one MES114 modules with 10 logic inputs and 4 output relays. After selecting the MES114 type required by an application, the logic inputs must be assigned to functions. The functions are chosen from a list which covers the whole range of possible uses. The functions are adapted to meet needs within the limits of the logic inputs available. The inputs may also be inverted for undervoltage type operation.

A default input / output assignment is proposed for the most frequent uses.

Control and monitoring Description of predefined functions

Each Sepam contains the appropriate predefined control and monitoring functions for the chosen application.

ANSI 94/69 - Circuit breaker/contactor control

Control of breaking devices equipped with different types of closing and tripping coils:

- circuit breakers with shunt or undervoltage trip coils
- latching contactors with shunt trip coils
- The function processes all breaking device closing and tripping conditions, based on:
- protection functions
- breaking device status data
- remote control orders

■ specific control functions for each application (e.g. recloser).

The function also inhibits breaking device closing, according to the operating conditions.

With Sepam series 20, it is necessary to use an MES114 module in order to have all the required logic inputs.

ANSI 86 - Latching / acknowledgement

The tripping outputs for all the protection functions and all the logic inputs can be latched individually. The latched information is saved in the event of an auxiliary power failure.

(The logic outputs cannot be latched.)

All the latched data may be acknowledged:

- locally, with the with key
- remotely via a logic input
- or via the communication link.

The Latching/acknowledgement function, when combined with the circuit breaker/ contactor control function, can be used to create the ANSI 86 "Lockout relay" function.

ANSI 68 - Logic discrimination

This function provides:

perfect tripping discrimination with phase-to-phase and phase-to-earth shortcircuits, on all types of network

■ faster tripping of the breakers closest to the source (solving the drawback of conventional time discrimination).

Each Sepam is capable of:

■ sending a blocking input when a fault is detected by the phase overcurrent and earth fault protection functions, which may or may not be directional (ANSI 50/51, 50N/51N, 67 or 67N/67NC)

■ and receiving blocking inputs which inhibit protection tripping. A saving mechanism ensures continued operation of the protection in the event of a blocking link failure.

Output relay testing

Each output relay is activated for 5 seconds, to make it simpler to check output connections and connected switchgear operation.

Control and monitoring Description of predefined functions

ANSI 30 - Local annunciation

- LED indication on the Sepam front panel
- 2 LEDs indicate the unit operating status:
- □ green LED ON: Sepam on
- □ red "key" LED: Sepam unavailable (initialization phase or detection of an internal failure)
- 9 yellow LEDs:
- □ pre-assigned and identified by standard removable labels
- □ the SFT2841 software tool may be used to assign LEDs and personalize labels.

Local annunciation on Sepam's advanced UMI

Events and alarms may be indicated locally on Sepam's advanced UMI by:

- messages on the display unit, available in 2 languages:
- □ english, factory-set messages, not modifiable

□ local language, according to the version delivered (the language version is chosen when Sepam is set up)

■ the lighting up of one of the 9 yellow LEDs, according to the LED assignment, which is set using SFT2841.

Alarm processing

when an alarm appears, the related message replaces the current display and the related LED goes on.

The number and type of messages depend on the type of Sepam. The messages are linked to Sepam functions and may be viewed on the front-panel display and in the SFT2841 "Alarms" screen.

■ to clear the message from the display, press the 😭 key

■ after the fault has disappeared, press the 🗃 key: the light goes off and Sepam is reset

■ the list of alarm messages remains accessible (▲ key) and may be cleared by pressing the → key.

Sepam series 20 Sepam series 40

Control and monitoring Adaptation of predefined functions using the SFT2841 software

The predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options:

- customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages
- logic equation editor, to adapt and complete the predefined control and monitoring functions (Sepam series 40 only)
- creation of personalized messages for local annunciation (Sepam series 40 only).

SFT2841: control matrix.

Control matrix

- The control matrix is a simple way to assign data from:
- protection functions
- control and monitoring functions
- Iogic inputs
- logic equations
- to the following output data:
- output relays
- 9 LEDs on the front panel of Sepam
- messages for local annunciation
- triggering of disturbance recording.

Logic equation editor (Sepam series 40)

The logic equation editor included in the SFT2841 software can be used to:

- complete protection function processing:
- □ additional interlocking
- conditional inhibition/validation of functions
- □ etc

adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

A logic equation is created by grouping logic input data received from:

- protection functions
- logic inputs
- remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message via the control matrix
- transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit
- breaking device closing
- used to inhibit or reset a protection function.

Personalized alarm and operating messages (Sepam series 40)

The alarm and operating messages may be personalized using the SFT2841 software tool.

The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

- on the Sepam display
- in the SFT2841 "Alarms" and "Alarm History" screens.

Characteristics Sepam series 20 Sepam series 40

Base unit Presentation

Base units are defined according to the following characteristics.

- type of User-Machine Interface (UMI)
- working language
- type of base unit connector
- type of current sensor connector.

Sepam base unit (series 20 or series 40) with integrated advanced UMI.

Sepam base unit (series 20 or series 40) with basic UMI

Customized Chinese advanced UMI.

User-Machine Interface

Two types of User-Machine Interfaces (UMI) are available for Sepam base units (series 20 or series 40):

- advanced UMI
- basic UMI.

The advanced UMI can be integrated in the base unit or installed remotely on the cubicle. Integrated and remote advanced UMIs offer the same functions.

- A Sepam (series 20 or series 40) with a remote advanced UMI is made up of :
- a base unit with basic UMI, for mounting inside the LV compartment
- a remote advanced UMI (DSM303)

□ for flush mounting on the front panel of the cubicle in the location most suitable for the facility manager

□ for connection to the Sepam base unit using a prefabricated CCA77x cord. The characteristics of the remote advanced UMI module (DSM303) are presented on page 218.

Advanced UMI

Comprehensive data for facility managers

All the data required for local equipment operation may be displayed on demand: ■ display of all measurement and diagnosis data in numerical format with units and/

or in bar graphs

display of operating and alarm messages, with alarm acknowledgment and Sepam resetting

- display and setting of all the Sepam parameters
- display and setting of all the parameters of each protection function
- display of Sepam and remote module versions
- output testing and logic input status display
- entry of 2 passwords to protect parameter and protection settings.

Ergonomic data presentation

keypad keys identified by pictograms for intuitive navigation

- menu-guided access to data.
- graphical LCD screen to display any character or symbol
- excellent display quality under all lighting conditions: automatic contrast setting and backlit screen (user activated).

Basic UMI

A Sepam with basic UMI offers an economical solution suited to installations that do not require local operation (managed by a remote monitoring and control system) or to replace electromechanical or analog electronic protections units with no additional operating needs.

- The basic UMI includes:
- 2 signal lamps indicating Sepam operating status:
 9 parameterizable yellow signal lamps equipped with a standard label
- button for clearing faults and resetting
- Working language

All the texts and messages displayed on the advanced UMI are available in 2 languages:

- english, the default working language
- and a second language, which may be
- □ french
- □ spanish
- another "local" language.

Please contact us regarding local language customization.

Setting and operating software

SFT2841 setting and operating software can be used for easy setting of Sepam parameters and protection functions.

A PC containing the SFT2841 software is connected to the communication port on the front of the unit or through the communication network.
Base unit Presentation

Selection guide				
Base unit	With basic UMI	With integrated advanced UMI	With remote advanced UMI	
ικυνατα	Schercher Brei	00002 1. 165A me 2. 166A me 3. 167A me 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Functions				
Metering and diagnosis data				
Alarms and operating messages				
Sepam parameter setting				
Protection setting				
Version of Sepam and remote modules		-		
Status of logic inputs				
Local control				
Alarm acknowledgement				
Sepam reset	•	•		
Output testing				
Characteristics				
Screen				
Size		128 x 64 pixels	128 x 64 pixels	
Automatic contrast setting				
Backlit screen				
Keypad				
Number of keys	1	9	9	
LEDs				
Sepam operating status	2 LEDs on front	2 LEDs on front	 base unit: 2 LEDs on front remote advanced UMI: 2 LEDs on front 	
Indication LEDs	9 LEDs on front	9 LEDs on front	9 LEDs on remote advanced UMI	
Mounting				
	Flush mounted on front of cubicle	Flush mounted on front of cubicle	 base unit with basic UMI, mounted at the back of the compartment using the AMT840 mounting plate DSM303 remote advanced UMI module ,flush mounted on the front of the cubicle and connected to the base unit with the CCA77x prefabricated cord 	

Base unit Presentation

Hardware characteristics

Auxiliary power supply

Sepam series 20 and Sepam series 40 can be supplied by either of the following voltages

- 24 to 250 V DC ■ 110 to 240 V AC

Backup capacity

Sepam series 40 allows the following data to be stored in the event of an auxiliary power outage for a minimum of 48 hours :

- time-tagged event tables
- disturbance recording data
- peak demands, tripping context, etc.
- date and time

Four relay outputs

The 4 relay outputs O1 to O4 on the base unit must be connected to connector (A). Each output can be assigned to a predetermined function using the SFT2841 software

O1, O2 and O3 are 3 control outputs with one NO contact. O1 and O2 are used by default for the switchgear control function:

- O1: switchgear tripping
- O2: switchgear closing inhibition.

O4 is an indication output with one NO contact and one NC contact.

It can be assigned to the watchdog function.

Main connector (A)

A choice of 2 types of removable, screw-lockable 20-pin connectors:

- CCA620 screw-type connector
- CCA622 ring lug connector.

Phase current input connector

Current sensors connected to removable, screw-lockable connectors according to type of sensors used:

CCA630 or CCA634 connector for 1 A or 5 A current transformers

- or
- CCA670 connector for LPCT sensors.

The presence of these connectors is monitored.

Voltage input connector

Sepam B21 and B22

Voltage sensors connected to the removable, screw-lockable CCT640 connector. The presence of the CCT640 connector is monitored.

Sepam series 40

Voltage sensors connected to the 6-pin connector (E).

- A choice of 2 types of removable, screw-lockable 6-pin connectors:
- CCA626 screw-type connector
- or
- CCA627 ring lug connector.

The presence of the (E) connector is monitored.

Mounting accessories

AMT840 mounting plate

It is used to mount a Sepam with basic UMI inside the compartment with access to connectors on the rear panel.

Mounting used with remote advanced UMI module (DSM303).

AMT852 lead sealing accessory

The AMT852 lead sealing accessory can be used to prevent unauthorized modification of the settings of Sepam series 20 and Sepam series 40 units with integrated advanced UMIs.

- The accessory includes:
- a lead-sealable cover plate
- the screws required to secure the cover plate to the integrated advanced UMI of the Sepam unit.

Note: the AMT852 lead sealing accessory can secured only to the integrated advanced UMIs of Sepam series 20 and Sepam series 40 units with serial numbers higher than 0440000.

Sepam unit with integrated advanced UMI and lead sealing accessory AMT852

Base unit Dimensions

Dimensions

160 DE88104 6.3 52 2.04 ¥ 176 6.93

mm

in

Sepam with advanced UMI and MES114, flush-mounted in front panel.

(1) With basic UMI: 23 mm (0.91 in).

Sepam with advanced UMI and MES114, flush-mounted in front panel.

Clearance for Sepam assembly and wiring.

Cut-out

90

DE88

Cut-out accuracy must be complied with to ensure good withstand.

Assembly with AMT840 mounting plate

Used to mount Sepam with basic UMI at the back of the compartment with access to the connectors on the rear panel.

Mounting associated with the use of the remote advanced UMI (DSM303).

Sepam with basic UMI and MES114, mounted with AMT840 plate. Mounting plate thickness: 2 mm (0.079 in).

Trim the edges of the cut-out plates to remove

Failure to follow this instruction can cause

HAZARD OF CUTS

any jagged edges.

serious injury.

AMT840 mounting plate.

2

Base unit Description

- Green LED: Sepam on. 1
- 2 Red LED: Sepam unavailable.
- 3 9 yellow indication LEDs.
- Label identifying the indication LEDs. 4
- Graphical LCD screen. 5
- 6 Display of measurements.
- Display of switchgear, network and machine 7 diagnosis data.
- Display of alarm messages. Sepam reset (or confirm data entry). 8
- 9
- 10 Acknowledgement and clearing of alarms (or move cursor up). 11 LED test (or move cursor down).
- 12 Access to protection settings.
- 13 Access to Sepam parameter setting.
- 14 Entry of 2 passwords.
- 15 PC connection port.

The ", $\bigstar,$, \clubsuit " keys (9, 10, 11) are used to browse through the menus and to scroll through and accept the values displayed.

15 14 13 12 11 10 9

Front panel with basic UMI

Green LED: Sepam on. 1

- 2 Red LED: Sepam unavailable.
- 9 yellow indication LEDs. 3
- Label identifying the indication LEDs. 4
- Acknowledgement / clearing of alarms and Sepam 5 reset.
- PC connection port. 6

Base unit Description

Rear panel - Sepam series 40

3 1 2 E ³ 2 1 E ାଡା B Ø 19 **•** 0 18 **•** 0 17 **•** <u>•</u> (A)15 14 13 70 11 10 子 O ⁸7℃ ⁵ ≩0 2 •/ ^ 1 +/ ^ (D)7 ()0 (C)4

- 1 Base unit.
- (A) 20-pin connector for:
 - auxiliary poxer supply
 - 4 relay outputs
 - 1 residual current input.
- (B) Connector for 3 phase current I1, I2, I3 inputs and residual current
- (c) Communication port.
- (D) Remote module connection port .
- (E) 6-pin connector for 3 phase voltage V1, V2, V3 inputs.
- 2 Connector for MES114 input/output module.
- 3 2 mounting clips.
- 4 2 locating nibs in flush-mounted position.

2

Base unit Technical characteristics

Woight						
Senem series 20		Minimum				1.2 kg (2.6 lb)
Sepam series 20		Maximum weight (base unit with basic	DIVI and without N	1EST14)	1.2 Kg (2.6 lb)
Sonam sorios 40		Viaximum weight (base unit with basis LIML and without MES114)				1.1 Kg (3.1 lb)
00000000000000000000000000000000000000		Maximum weight	base unit with adva	anced UMI and ME	S114)	1.9 kg (4.2 lb)
Analog inputs		Waximam weight			5114)	1.5 kg (4.2 kb)
Current transformer		Inputimpedance				< 0.02.0
1 A or 5 A CT (with CCA630 or CCA	4634)					< 0.02 VA at 1 A
1 A to 6250 A ratings		Concernption				< 0.5 VA at 5 A
		Rated thermal with	hstand			4 In
		1-second overload	d			100 In (≤ 500 A)
Voltage transformer		Input impedance				> 100 k Ω
220 V to 250 kV ratings		Input voltage				100 to 230/√3 V
		Rated thermal with	hstand			240 V
		1-second overload	d			480 V
Iemperature sensor i	nput (MET148-2 moo	dule)				
Type of sensor		Pt 100				Ni 100 / 120
Isolation from earth		None				None
Current Injected in sensor	ar and modula	4 mA				4 mA
		MES114	MES114E		MES114E	-
		WEST14		110.1/ 10	WIE5114F	220 to 240 14 0
voitage		24 to 250 V DC	110 to 125 V DC	110 V AC	220 to 250 V DC	220 to 240 V AC
Frequency		19.2 10 213 V DC	-	47 to 63 Hz		47 to 63 Hz
Typical consumption		3 mA	3 mA	3 mA	3 mA	3 mA
Typical switching threshold		14 V DC	82 V DC	58 V AC	154 V DC	120 V AC
Input limit voltage	At state 1	≥ 19 V DC	≥ 88 V DC	≥ 88 V AC	≥ 176 V DC	≥ 176 V AC
	At state 0	≤6VDC	≤ 75 V DC	≤22 V AC	≤ 137 V DC	≤ 48 V AC
Isolation of inputs in relation to oth	er isolated groups	Enhanced	Enhanced	Enhanced	Enhanced	Enhanced
Relays outputs						
Control relay outputs (O1,	02, 03, 011 contacts) (2)					
Voltage	DC	24 / 48 V DC	127 V DC	220 V DC	250 V DC	-
	AC (47.5 to 63 Hz)	-	-	-	-	100 to 240 V AC
Continuous current		8 A	8 A	8 A	8 A	8 A
Breaking capacity	Resistive load	8/4A	0.7 A	0.3 A	0.2 A	-
	L/R load < 20 ms	6/2A	0.5 A	0.2 A	-	-
	L/R load < 40 ms	4/1A	0.2 A	0.1 A	-	-
	n f load > 0.3	-	-	-	-	<u>6A</u>
Making capacity	p.i. ioau > 0.5	- < 15 Δ for 200 ms	-	-	-	54
Isolation of outputs in relation to ot	her isolated groups	Enhanced				
Annunciation relay output	(04, 012, 013, 014 conta	cts)				
Voltage	DC	24 / 48 V DC	127 V DC	220 V DC	250 V DC	-
	AC (47.5 to 63 Hz)	-	-	-	-	100 to 240 V AC
Continuous current		2 A	2 A	2 A	2 A	2A
Breaking capacity	Resistive load	2/1A	0.6 A	0.3 A	0.2 A	-
	L/R load < 20 ms	2/1A	0.5 A	0.15 A	0.2 A ⁽³⁾	-
	p.f. load > 0.3	-	-	-	-	1A
Isolation of outputs in relation to ot	her isolated groups	Enhanced				
Powersupply						
Voltage		24 / 250 V DC		110 / 240 V AC		
Range	Conom corico 20	-20 % +10 %		-20 % +10 % (47.5 to 63 HZ)	
Deactivated consumption	Separa series 40	< 4.5 VV		< 9 VA		
Maximum consumption (1)	Separt series 20	< 8 W		< 15 VA		
	Sepam series 40	< 11 W		< 25 VA		
Inrush current	Sepam series 20, serie 40	< 10 A for 10 ms. <	< 28 A for 100 µs	< 15 A for first	half-period	
Acceptable momentary outages	Sepam series 20	10 ms		10 ms	•	
	Sepam series 40	20 ms		20 ms		
Analog output (MSA1	41 mod <u>ule)</u>					
Current		4 - 20 mA, 0 - 20 r	mA, 0 - 10 mA, 0 -	1 mA		
Load impedance		< 600 Ω (wiring in	cluded)			
Accuracy		0.50 % PE or 0,01	1 mA			
 According to configuration. Relay outputs comply with clau Sepam series 20 only. 	se 6.7 of standard C37.90 (30	A, 200 ms, 2000 ope	erations).			

Base unit Environmental characteristics

	Ctoudoud		
Electromagnetic compatibility	Standard	Level / Class	value
Emission tests			
Disturbing field emission	IEC 60255-25 EN 55022	Δ	
Conducted disturbance emission	IEC 60255-25		
	EN 55022	В	
Immunity tests – Radiated disturbances			
Immunity to radiated fields	IEC 60255-22-3	Ш	10 V/m; 80 MHz - 1 GHz
	ANSI C37.90.2 (2004)	111	20 V/m; 80 MHz - 1 GHz
Electrostatic discharge	IEC 60255-22-2		8 kV air ; 6 kV contact
	ANSI C37.90.3		8 kV air ; 4 kV contact
Immunity to magnetic fields at network frequency	IEC 61000-4-8	IV	30 A/m (continuous) - 300 A/m (13 s)
Immunity tests – Conducted disturbances	IEC 60255 22 6		10.1/
Immunity to conducted RF disturbances	IEC 61000-4-16		10 V
to 150 kHz	150 00055 00 /		
Fast transient dursts	IEC 60255-22-4	A or B	4 KV ; 2.5 KHZ / 2 KV ; 5 KHZ
	ANSI C37.90.1	1 V	4 kV : 2.5 kHz
1 MHz damped oscillating wave	IEC 60255-22-1		2.5 kV MC ; 1 kV MD
	ANSI C37.90.1		2.5 kV MC and MD
100 kHz damped oscillating wave	IEC 61000-4-12		2.5 kV MC ; 1 kV MD
Surges Voltage interruptions	IEC 60255-11	111	Series 20: 100 % 10 ms
	0 00200 11		Series 40: 100 %, 20 ms
Mechanical robustness	Standard	Level / Class	Value
In operation			
Vibrations	IEC 60255-21-1	2	1 Gn ; 10 Hz - 150 Hz
	IEC 60068-2-6	Fc	3 Hz - 13.2 Hz ; a = ±1 mm (±0.039 ln)
Chaolia	IEC 60068-2-64	2M1	10 Cn / 11 ma
Earthquakes	IEC 60255-21-2	2	2 Gn (horizontal axes)
		-	1 Gn (vertical axes)
De-energized			, , , , , , , , , , , , , , , , , , ,
Vibrations	IEC 60255-21-1	2	2 Gn ; 10 Hz - 150 Hz
Shocks	IEC 60255-21-2	2	<u>30 Gn / 11 ms</u>
Joits Climatia withotond	EC 60255-21-2		20 Gn / 16 ms
In exerction	Stanuaru	Level / Glass	value
Exposure to cold	IEC 60068-2-1	Series 20: Ab	-25 °C (-13 °E)
		Series 40: Ad	20 0(10 1)
Exposure to dry heat	IEC 60068-2-2	Series 20: Bb	+70 °C (+158 °F)
Continuous exposure to damp beat	IEC 60068-2-3	Series 40: Bd	10 days : 93 % PH : 40 °C (104 °E)
Temperature variation with specified variation rate	IEC 60068-2-14	Nb	-25 °C to +70 °C (-13 °F to +158 °F)
· · ·			5 °C/min (41 °F/min)
Salt mist	IEC 60068-2-52	Kb/2	
Influence of corrosion/gaz test 2	IEC 60068-2-60	C	21 Days, 75% RH, 25°C, 500.10-9 vol/
Influence of corrosion/gaz test 4	IEC 60068-2-60	Method 3	21 Davs. 75% RH. 25°C.
0			10+/-5 H ² S; 200+/-20 SO ² ; 200+/-20
	EIA 264 65A	111.0	NO ² , 10+/-5 Cl ² (10-9 vol/vol)
	EIA 304-03A	IIIA	42 days, 75% RH, 30 C, 100+/-20 H ² S; 200+/-50 SO ² ; 200+/-50
			NO ² , 20+/-5 Cl ² (10-9 vol/vol)
In storage ⁽³⁾			
Exposure to cold	IEC 60068-2-1	Ab	-25 °C (-13 °F)
Exposure to dry heat	IEC 60068-2-2	Bb	+70 °C (+158 °F)
Safoty	Standard		Valuo
Enclosure safety tests	Stanuaru		
Front panel tightness	IEC 60529	IP52	Other panels closed, except for rear
			panel IP20
The Martin of	NEMA	Туре 12	
Fire withstand	IEC 60695-2-11		650 °C with glow wire (1562 °F)
1 2/50 us impulse wave	IEC 60255-5		5 kV ⁽¹⁾
Power frequency dielectric withstand	IEC 60255-5		2 kV 1 mn ⁽²⁾
Certification			
CE	Harmonized standard:	European Electromage	netic Compatibility Directive (EMCD)
	EN 50263	2004 / 108 / EC of 15 De	cember 2004
		European Low Voltage of 12 December 2006	e Directive (LVD) 2006/95/CE
	UL508 - CSA C22 2 n° 14-9	5 12 December 2000	File E212533
CSA	CSA C22.2 n° 14-95 / n° 94	-M91 / n° 0.17-00	File 210625

(1) Except for communication: 3 kV in common mode and 1kV in differential mode
(2) Except for communication: 1 kVrms
(3) Sepam must be stored in its original packing.

Base unit

Sepam series 20

(1) This type of connection allows the calculation of residual voltage.

Connection

Dangerous voltages may be present on the terminal screws, whether the terminals are used or not. To avoid all danger of electrical shock, tighten all terminal screws so that they cannot be touched inadvertently.

Connector	Туре	Reference	Wiring
A	Screw type	CCA620	 wiring with no fittings: 1 wire with max. cross-section 0.2 to 2.5 mm² (≥AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire AZ5DE010D for 2 x 1 mm² wires tube length: 8 mm
	6.35 mm ring lugs	CCA622	 6.35 mm ring or spade lugs (1/4 in) maximum wire cross-section of 0.2 to 2.5 mm² (> AWG 24-12) stripped length: 6 mm use an appropriate tool to crimp the lugs on the wires maximum of 2 ring or spade lugs per terminal tightening torque: 0.7 to 1 Nm
B For Sepam S20, S23, T20, T23 and	4 mm ring lugs	CCA630, CCA634 for connection of 1 A or 5 A CTs	 wire cross-section of 1.5 to 6 mm² (AWG 16-10) tightening torque: 1.2 Nm (13.27 lb-in)
M20	RJ45 plug	CCA670, for connection of 3 LPCT sensors	Integrated with LPCT sensor
B For Sepam B21 and B22	Screw type	CCT640	Same as wiring for the CCA620
C	White RJ45 plug		CCA612
D	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13 ft)

Connection diagrams Sepam series 20 Sepam series 40

Base unit Sepam series 40

(1) This type of connection allows the calculation of residual voltage.
 (2) Accessory for bridging terminals 3 and 5 supplied with CCA626 and CCA627 connector.

Connection

Dangerous voltages may be present on the terminal screws, whether the terminals are used or not. To avoid all danger of electrical shock, tighten all terminal screws so that they cannot be touched inadvertently.

Connector	Туре	Reference	Wiring
A	Screw type	CCA620	 wiring with no fittings: 1 wire with max. cross-section 0.2 to 2.5 mm² (≥AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire DZ5CE025D for 1 x 2.5 mm² wire AZ5DE010D for 2 x 1 mm² wires tube length: 8.2 mm stripped length: 8 mm
	6.35 mm ring lugs	CCA622	 € .35 mm ring or spade lugs (1/4 in) maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) stripped length: 6 mm use an appropriate tool to crimp the lugs on the wires maximum of 2 ring or spade lugs per terminal tightening torque: 0.7 to 1 Nm
В	4 mm ring lugs	CCA630, CCA634, for connection of 1 A or 5 A CTs	 wire cross-section of 1.5 to 6 mm² (AWG 16-10) tightening torque: 1.2 Nm (13.27 lb-in)
	RJ45 plug	CCA670, for connection of 3 LPCT sensors	Integrated with LPCT sensor
C	White RJ45 plug		CCA612
D	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13 ft)
(E)	Screw type	CCA626	Same as wiring for the CCA620
<u> </u>	6.35 mm ring lugs	CCA627	Same as wiring for the CCA622

Base unit Other phase current input connection schemes

Variant 1: phase current measurements by 3 x 1 A or 5 A CTs (standard connection)

Description

Connection of 3 x 1 A or 5 A sensors to the CCA630 or CCA634 connector.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

i ululliotoro		
Sensor type	5 A CT or 1 A CT	
Number of CTs	11, 12, 13	
Rated current (In)	1 A to 6250 A	

Variant 2: phase current measurement by 2 x 1 A or 5 A CTs

Description

Connection of 2 x 1 A or 5 A sensors to the CCA630 or CCA634 connector.

The measurement of phase currents 1 and 3 is sufficient to ensure all the phase current-based protection functions.

The phase current I2 is only assessed for metering functions, assuming that I0 = 0.

This arrangement does not allow the calculation of residual current.

Parameters

Sensor type	5 A CT or 1 A CT	
Number of CTs	11, 13	
Rated current (In)	1 A to 6250 A	

Variant 3: phase current measurement by 3 LPCT type sensors

Description

Connection of 3 Low Power Current Transducer (LPCT) type sensors to the CCA670 connector. The connection of only one or two LPCT sensors is not allowed and causes Sepam to go into fail-safe position.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

Sensor type	LPCT
Number of CTs	11, 12, 13
Rated current (In)	25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000 or 3150 A

Note: Parameter In must be set 2 twice:

Software parameter setting using the advanced UMI or the SFT2841 software tool

■ Hardware parameter setting using microswitches on the CCA670 connector

Base unit Other residual current input connection schemes

Variant 1: residual current calculation by sum of 3 phase currents

Description

Residual current is calculated by the vector sum of the 3 phase currents I1, I2 and I3, measured by 3 x 1 A or 5 A CTs or by 3 LPCT type sensors. See current input connection diagrams.

Parameters

Residual current	Rated residual current	Measuring range
Sum of 3 Is	In0 = In, CT primary current	0.1 to 40 In0

Variant 2: residual current measurement by CSH120 or CSH200 core balance CT

(standard connection)

Description

Arrangement recommended for the protection of isolated or compensated neutral systems, in which very low fault currents need to be detected.

Parameters

Residual current	Rated residual current	Measuring range
2 A rating CSH	In0 = 2 A	0.2 to 40 A
5 A rating CSH (Sepam series 40)	In0 = 5 A	0.5 to 100 A
20 A rating CSH	In0 = 20 A	2 to 400 A

Variant 3: residual current measurement by 1 A or 5 A CTs and CCA634

Description

Residual current measurement by 1 A or 5 A CTs.

- Terminal 7: 1 A CT
- Terminal 8: 5 A CT

Parameters

Residual current	Rated residual current	Measuring range
1 A CT	In0 = In, CT primary current	0.1 to 20 In0
1 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0
5ACT	In0 = In, CT primary current	0.1 to 20 In0
5 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0

L1 L2 L3

j

DE88343

Base unit Other residual current input connection schemes

Variant 4: residual current measurement by 1 A or 5 A CTs and CSH30 interposing ring CT

A

10

19

18

The CSH30 interposing ring CT is used to connect 1 A or 5 A CTs to Sepam to measure residual current:

connection of CSH30 interposing ring CT to 1 A CT: make 2 turns through CSH primary

■ connection of CSH30 interposing ring CT to 5 A CT: make 4 turns through CSH primary.

■ for Sepam series 40, the sensitivity can be mulitplied by 10 using the "sensitive" setting with In0 = In/10.

Parameters

Residual current	Rated residual current	Measuring range
1 A CT	In0 = In, CT primary current	0.1 to 20 In0
1 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0
5 A CT	In0 = In, CT primary current	0.1 to 20 In0
5 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0

CSH30

CT 1 A : 2 turns CT 5 A : 4 turns

Variant 5: residual current measurement by core balance CT with ratio of 1/n (n between 50 and 1500)

Description

The ACE990 is used as an interface between an MV core balance CT with a ratio of 1/n (50 < n < 1500) and the Sepam residual current input. This arrangement allows the continued use of existing core balance CTs on the installation.

Parameters

Residual current	Rated residual current	Measuring range
ACE990 - range 1	$ln0 = lk.n^{(1)}$	0.1 to 20 In0
(0.00578 ≤ k ≤ 0.04)		
ACE990 - range 2	$ln0 = lk.n^{(1)}$	0.1 to 20 In0
(0.0578 ≤ k ≤ 0.26316)		

(1) n = number of core balance CT turns

k = factor to be determined according to ACE990 wiring and setting range used by Sepam

Voltage inputs

Sepam series 20

The phase and residual voltage transformer secondary circuits are connected to the CCT640 connector (item B) on Sepam series 20 type B units. The CCT640 connector contains 4 transformers which perform isolation and impedance matching of the VTs and Sepam input circuits.

Voltage inputs

Sepam series 40

The phase and residual voltage transformer secondary circuits are connected directly to the connector marked $(\underline{E}).$

The 3 impedance matching and isolation transformers are integrated in the Sepam series 40 base unit.

Variant 1: measurement of 3 phase-to-neutral voltages (standard connection)

Phase voltage sensor parameter setting	3V
Residual voltage sensor parameter setting	3V sum
Voltages measured	V1, V2, V3
Values calculated	U21, U32, U13, V0, Vd, Vi, f
Measurements unavailable	None
Protection functions unavailable (according to type of Sepam)	None

Variant 2: measurement of 2 phase-to-phase voltages and residual voltage

Phase voltage sensor parameter setting	U21, U32
Residual voltage sensor parameter setting	External VT
Voltages measured	U21, U32, V0
Values calculated	U13, V1, V2, V3, Vd, Vi, f
Measurements unavailable	None
Protection functions unavailable (according to type of Sepam)	None

Variant 3: measurement of 2 phase-to-phase voltages

Phase voltage sensor parameter setting	U21, U32
Residual voltage sensor parameter setting	None
Voltages measured	U21, U32
Values calculated	U13, Vd, Vi, f
Measurements unavailable	V1, V2, V3, V0
Protection functions unavailable (according to type of Sepam)	67N/67NC, 59N

Connection diagrams Sepam series 20 Sepam series 40

Voltage inputs

Sepam series 40

schneider-electric.com

Training

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures... • selection guides from

the e-catalog. • product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... Training allows you to acquire the Schneider Electric expertise (installation design, work with power on, etc.) for increased efficiency and a guarantee of improved customer service.

The training catalogue includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, design of LV installations to give but a few examples.

Take the most of y	tota mende		
	Second Second	Energy Million (Mills Papers) and an analysis of the second seco	

Sepam series 60

Range description Sepam series 20 and Sepam series 40	5 51
Sonom sorios 60	90
	09
Selection table	90
Functions Sepam series 60	92
Sensor inputs	92
General settings	93
Metering and diagnosis	94
Description	94
Characteristics	99
Protection	100
Description	101
Tripping curves	107
Main characteristics	109
Setting ranges	110
Control and monitoring	114
Description	114
Description of predefined functions	115
Adaptation of predefined functions using the SFT2841 software	119
Characteristics Sepam series 60	121
Base unit	121
Presentation	121
Description	125
lechnical characteristics	127
Dimonsions	128
	129
Connection diagrams Sepam series 60	130
Base unit	130
Connection	131
Phase current inputs	132
Residual current inputs	133
Phase voltage inputs	13 5
Residual voltage input	135
Main channels	135
Available functions	137
Sepam series 80	139
Additional modules and accessories	195
Order form	275

Selection table

		Substation	า	Transform	er	Motor	Generator		Cap.
Protoction	ANSLoodo	860		Teo	Teo	Met	CEO	<u>C62</u>	C60
Protection	ANSICOUE	300	302	100	102		600	602	000
Earth fault / Sensitive earth fault ⁽¹⁾	50/51 50N/51N	4	4	4	4	4	4	4	4
 Breaker failure	50G/51G	1	1	1	1	1	1	1	1
Negative sequence / unbalance	46	2	2	2	2	2	2	2	2
Thermal overload for cables	10PMS	2	1	2	2	2	2	2	2
Thermal overload for machines (1)				2	2	2	2	2	
Thermal overload for capacitors	49RMS			2	2	2	2	2	1
Restricted earth fault	64REF			2	2				
Directional phase overcurrent ⁽¹⁾	67		2		2			2	
Directional earth fault ⁽¹⁾	67N/67NC		2		2	2		2	
Directional active overpower	32P		2		2	2	2	2	
Directional reactive overpower	32Q					1	1	1	
Directional active underpower	37P						2	2	
Phase undercurrent	37					1			
Excessive starting time, locked rotor	48/51LR/14					1			
Starts per hour	66					1			
Field loss (underimpedance)	40					1	1	1	
Overspeed (2 set points) ⁽²⁾	12								
Underspeed (2 set points) ⁽²⁾	14								
Voltage-restrained overcurrent	50V/51V						1	1	
Underimpedance	21B						1	1	
Undervoltage (L-L or L-N)	27	2	2	2	2	2	2	2	2
Positive sequence undervoltage	27D	2	2	2	2	2	2	2	2
Remanent undervoltage	27R	2	2	2	2	2	2	2	2
Overvoltage (L-L or L-N)	59	2	2	2	2	2	2	2	2
Neutral voltage displacement	59N	2	2	2	2	2	2	2	2
Negative sequence overvoltage	47	2	2	2	2	2	2	2	2
Overfrequency	81H	2	2	2	2	2	2	2	2
Underfrequency	81L	4	4	4	4	4	4	4	4
Rate of change of frequency	81R	2	2				2	2	
Recloser (4 cycles) ⁽²⁾	79								
Thermostat / Buchholz ⁽²⁾	26/63								
Temperature monitoring (16 RTDs) ⁽³⁾	38/49T								
Synchro-check ⁽⁴⁾	25								
Control and monitorin	ly l	-	_	-	_	_		_	_
Circuit breaker / contactor control	94/69					<u> </u>			<u> </u>
Automatic transfer (AT) ⁽²⁾	<u>.</u>	U		Ц	Ц			U	
Load shedding / automatic restart ⁽²	:)							_	
							<u> </u>	<u>п</u>	
Genset shutdown ⁽²⁾	22				-	_			
	80				•		•		
Latcning / acknowledgement	86	-	-	-	-	-	-	-	-
Annunciation	30	-	-	-	-	-	-	-	-
Switching of groups of settings		-	-	-	-	-	-	-	-
Adaptation using logic equations		-	-	=	=	-	-	-	-

Adaptation using logic equations
The figures indicate the number of relays available for each protection function.
standard, □ options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional MES120 input/output modules.
(3) With optional MET148-2 temperature input modules.
(4) With optional MCS025 synchro-check module.

Selection table

	Substation	1	Transform	er	Motor	Generator		Cap.
Meterina	560	S62	T60	T62	M61	G60	G62	C60
Phase current I1, I2, I3 PMS		002	100	102			002	
Residual current lo. sum lo								
Demand current I1, I2, I3	•	•	•	•	•	•	-	•
Peak demand current IM1, IM2, IM3		•			•	•	•	•
Voltage U21, U32, U13, V1, V2, V3								
Residual voltage V0	-				-			
Positive sequence voltage Vd / rotation direction				:		:	: 1	
Frequency					-			-
Active power P. P1. P2. P3								
Reactive power Q, Q1, Q2, Q3	•	•	•	•	•	•	•	•
Apparent power S, S1, S2, S3	•	•	•	•	•	•	•	•
Peak demand power PM, QM								
Power factor	-		-	-	-	<u> </u>	-	-
Calculated active and reactive energy (±vvn, ±vARn)	-	-	•	•	-	-	•	-
(± Wh, ± VARh)					U		U	
Temperature (16 RTDs) ⁽³⁾								
Rotation speed ⁽²⁾					Ц	Ц	Ц	
Network and machine diagnosis								
Tripping context								
Tripping current Trip I1, Trip I2, Trip I3, Trip Io	-				-	-		-
Phase fault and earth fault trip counters	-		-		-			-
Unbalance ratio / negative sequence current li	-		-	-	-	-		-
Harmonic distortion (THD)	÷		-		-	-		
Current and Voltage Itnd, Utnd	-		-	-	-		-	-
Phase displacement ϕ_1, ϕ_2, ϕ_3	-	-	-	-	-		-	-
Disturbance recording recorded	-	-	-	-	-	-	-	-
Motor start report (MSR)					-			
Motor start trend (MST)	_	_	_	_	-	_	_	_
Data log (DLG)	-		-	-	-		-	-
I nermal capacity used			-	-	-		-	-
Remaining operating time before overload tripping			-				: 1	
Punning hours counter / operating time		-	-	-	-	-	-	-
Starting current and time					-		-	-
Start inhibit time					-			
Number of starts before inhibition								
Cable arcing fault detection								
Apparent positive sequence impedance Zd							•	
Apparent phase-to-phase impedances Z21, Z32, Z13	•	•	•	•	•	•	•	•
Third harmonic voltage, neutral point or residual						•	•	
Difference in amplitude, frequency and phase of voltages compared for synchro-check ⁽⁴⁾								
Switchgear diagnosis ANSI cod	A							
CT / VT supervision 60/60El								
Trip circuit supervision ⁽²⁾ 74	0							0
Cumulative breaking current	-	-			-	-		-
Number of operations, operating time, charging time								
number of racking out operations ⁽²⁾								
Additional modules								
8 temperature sensor inputs - MET148-2 module ⁽²⁾								
1 low level analog output - MSA141 module								
Logic inputs/outputs - MES120/MES120G/MES120H (141/6O) module								
Communication interface - ACE949-2, ACE959, ACE937, ACE969TP-2, ACE969FO- 2, ECI850, ACE850TP or ACE850FO								

standard, □ options.
(2) According to parameter setting and optional MES120 input/output modules.
(3) With optional MET148-2 temperature input modules.
(4) With optional MCS025 synchro-check module.

Functions Sepam series 60

Sensor inputs

Sepam M61 sensor inputs.

Sepam series 60 has analog inputs that are connected to the measurement sensors required for applications:

■ main analog inputs, available on all types of Sepam series 60:

□ 3 phase current inputs I1, I2, I3

□ 1 residual current input I0

 $\hfill\square$ 3 phase voltage inputs V1, V2, V3 or 2 phase voltage and 1 residual voltage input V0.

The table below lists the analog inputs available according to the type of Sepam series $60. \end{tabular}$

		S60, S62	T60, T62, M61, G60, G62, C60
Phase current inputs	Main channel	11, 12, 13	11, 12, 13
Residual current inputs	Main channel	10	10
Unbalance current inputs for capacitor bank			10
Phase voltage inputs	Main channel	V1, V2, V3 or U21, U32 ⁽¹⁾	V1, V2, V3 or U21, U32 ⁽¹⁾
Residual voltage inputs	Main channel	V0	VO
Temperature inputs (on MET148-2 module)			T1 to T16

(1) See VT connections diagram for Sepam series 60.

General settings

The general settings define the characteristics of the measurement sensors connected to Sepam and determine the performance of the metering and protection functions used. They are accessed via the SFT2841 setting software "General Characteristics", "CT-VT Sensors" and "Particular characteristics" tabs.

Gene	eral settings	Selection	Value
In	Rated phase current	2 or 3 1 A / 5 A CTs	1 A to 6250 A
	(sensor primary current)	3 LPCTs	25 A to 3150 A ⁽¹⁾
	Unbalance current sensor rating (capacitor application)	CT1A/2A/5A	1 A to 30 A
lb	Base current, according to rated power of equipment		0.2 to 1.3 In
	Base current on additional channels	Applications with transformer	l'b = lb x Un1/Un2
	(not adjustable)	Other applications	l'b = lb
In0	Rated residual current	Sum of 3 phase currents	See In(I'n) rated phase current
		CSH120 or CSH200 core balance CT	2 A or 20 A rating
		1 A/5 A CT + CSH30 interposing ring CT	1 A to 6250 A
		Core balance CT + ACE990 (the core balance CT ratio 1/n must be such that 50 y n y 1500)	According to current monitored and use of ACE990
Unp	Rated primary phase-to-phase voltage (Vnp: rated primary phase-to-neutral voltage Vnp = Unp/ $\sqrt{3}$)		220 V to 250 kV
Uns	Rated secondary phase-to-phase voltage	3 VTs: V1, V2, V3	90 to 230 V
		2 VTs: U21, U32	90 to 120 V
		1 VT: U21	90 to 120 V
		1 VT: V1	90 to 230 V
Uns0	Secondary zero sequence voltage for primary zero sequence voltage Unp/ $\sqrt{3}$		Uns/3 or Uns/3
Vntp	Neutral point voltage transformer primary voltage (generator application)		220 V to 250 kV
Vnts	Neutral point voltage transformer secondary voltage (generator application)		57.7 V to 133 V
fn	Rated frequency		50 Hz or 60 Hz
	Phase rotation direction		1-2-3 or 1-3-2
	Integration period (for demand current and peak demand current and power)		5, 10, 15, 30, 60 min
	Pulse-type accumulated energy meter	Increments active energy	0.1 kWh to 5 MWh
		Increments reactive energy	0.1 kVARh to 5 MVARh
P	Rated transformer power		100 kVA to 999 MVA
Ωn	Rated speed (motor, generator)		100 to 3600 rpm
R	Number of pulses per rotation (for speed acquisition)		1 to 1800 (Ωn x R/60 y 1500)
	Zero speed set point		5 to 20 % of On

(1) In values for LPCT, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Description

Metering

Sepam is a precision metering unit. All the metering and diagnosis data used for commissioning and required

for the operation and maintenance of your equipment are available locally

or remotely, expressed in the units concerned (A, V, W, etc.).

Phase current

RMS current for each phase, taking into account harmonics up to number 13.

Different types of sensors may be used to meter phase current:

■ 1 A or 5 A current transformers

LPCT type current sensors.

Residual current

Two residual current values are available depending on the type of Sepam and sensors connected to it:

■ residual current I0S, calculated by the vector sum of the 3 phase currents

measured residual current I0.

- Different types of sensors may be used to measure residual current:
- CSH120 or CSH200 specific core balance CT
- conventional 1 A or 5 A current transformer
- any core balance CT with an ACE990 interface.

Demand current and peak demand currents

Demand current and peak demand currents are calculated according to the 3 phase currents I1, I2 and I3:

■ demand current is calculated over an adjustable period of 5 to 60 minutes

peak demand current is the greatest demand current and indicates the current drawn by peak loads. Peak demand currents may be cleared.

Voltage and frequency

The following measurements are available according to the voltage sensors connected:

- phase-to-neutral voltages V1, V2, V3
- phase-to-phase voltages U21, U32, U13
- residual voltage V0 or neutral point voltage Vnt
- residual voltage volon neutral point voltage vi positive sequence voltage Vd and negative
- sequence voltage Vi
- frequency measured on the main voltage channels.

Power

Powers are calculated according to the phase currents I1, I2 and I3:

- active power
- reactive power
- apparent power
- power factor (cos φ).

According to the sensors used, power calculations may be based on the 2 or 3 wattmeter method.

The 2 wattmeter method is only accurate when there is no residual current and it is not applicable if the neutral is distributed.

The 3 wattmeter method gives an accurate calculation of 3-phase and phase by phase powers in all cases, regardless of whether or not the neutral is distributed.

Peak demand powers

The greatest demand active and reactive power values calculated over the same period as the demand current. The peak demand powers may be cleared.

Energy

4 accumulated energies calculated according to voltages and phase currents I1, I2 and I3 measured: active energy and reactive energy in both directions

1 to 4 additional accumulated energy meters for the acquisition of active or reactive energy pulses from external meters.

Temperature

Accurate measurement of temperature inside equipment fitted with Pt100, Ni100 or Ni120 type RTDs, connected to the optional remote MET148-2 module.

Rotation speed

Calculated by the counting of pulses transmitted by a proximity sensor at each passage of a cam driven by the rotation of the motor or generator shaft. Acquisition of pulses on a logic input.

Phasor diagram

A phasor diagram is displayed by SFT2841 software and the mimic-based UMI to check cabling and assist in the setting and commissioning of directional protection functions.

According to the connected sensors, all current and voltage information can be selected for display in vector form.

Data log (DLG)

This function is used to record and back up a set of measurements (1 to 15) available in the Sepam relay. The number of backed-up files and the number of measurements per file depend on the type of cartridge installed (extended cartrige available for Sepam 80 only). The recording mode and selection of measurements can be configured by the user via the SFT2841 software.

All trip of the function results from an external event (TC for example). The stop condition and file management differ according to which of the following 2 modes is used:

a) Limited: the DLG function stops automatically when the end of recording time is reached or on receipt of an external event (TC for example).

b) Circular: the file content is managed in a FIFO memory: when the file is full, the write operation continues and starts again at the start of the file. Stopping the write operation only results from an external event (TC for example). In the absence of the stop command, recording is continuous.

Using the DLG function does not affect the quality of service of Sepam's active protection functions.

Characteristics				
Configuration parameters				
Content of a COMTRADE file	 Configuration file (*.CFG): date, variable characteristics, transformation ratio of the selected variable values Samples file(*.DAT): recorded variables 			
Total file duration	1 s to 30 days			
Sampling period	1 s to 24 hours			
Variables available for recording	See the table of available data p.99/100.			
Number of files	1 à 20			
Number of variables per file	1 à 15			
Source of starting and stopping	 SFT 2841 software Logic equation or Logipam TC Logic or GOOSE input 			
File format	COMTRADE 9			
Nota : These parameters are configured with the SFT2841 software.				

Functions Sepam series 60

Metering and diagnosis

Description

Network diagnosis assistance

Sepam provides network power quality metering functions, and all the data on network disturbances detected by Sepam are recorded for analysis purposes.

Tripping context

Storage of tripping currents and IO, Ii, U21, U32, U13, V1, V2, V3, V0, Vi, Vd, F, P, Q and Vnt values when tripping occurs. The values for the last five trips are stored.

Tripping current

Storage of the 3 phase currents and earth fault current at the time of the last Sepam trip order, to indicate fault current.

The values are stored in the tripping contexts.

Number of trips

2 trip counters:

■ number of phase fault trips, incremented by each trip triggered by ANSI 50/51,

50V/51V and 67 protection functions

number of earth fault trips, incremented by each trip triggered by ANSI 50N/51 and 67N/67NC protection functions.

Negative sequence / unbalance

Negative sequence component of phase currents I1, I2 and I3, indicating the degree of unbalance in the power supplied to the protected equipment.

Total harmonic distortion

Two THD values calculated to assess network power quality, taking into account harmonics up to number 13:

- current THD, calculated according to I1
- voltage THD, calculated according to V1 or U21.

Phase displacement

• phase displacement φ 1, φ 2, φ 3 between phase currents 11, 12, 13 and voltages V1, V2, V3 respectively

phase displacement φ0 between residual current and residual voltage.

Disturbance recording

Recording triggered by user-set events:

- all sampled values of measured currents and voltages
- status of all logic inputs and outputs logic data: pick-up, ...

Recording characteristics

-				
Number of recordings in COM	Adjustable from 1 to 19			
Total duration of a recording	Adjustable from 1 to 11 s			
Number of samples per period	12 or 36			
Duration of recording prior to o	Adjustable from 0 to 99 periods			
Maximum recording capability				
Network frequency	12 samples per period	36 samples per period		
50 Hz	22 s	7 s		
60 Hz 18 s		6 s		

Voltage comparison for synchro-check

For the synchro-check function, the MCS025 module continuously measures the amplitude, frequency and phase differences between the 2 voltages to be checked.

Out-of-sync context

Storage of amplitude, frequency and phase differences between the 2 voltages measured by the MCS025 module when a closing order is inhibited by the synchrocheck function.

Description

Machine diagnosis assistance

Sepam assists facility managers by providing:

- data on the operation of their machines
- predictive data to optimize process management
- useful data to facilitate protection function setting and implementation.
- recording data during motor start (MSR) and create trend graphics (MST).

Thermal capacity used

Equivalent temperature buildup in the machine, calculated by the thermal overload protection function.

Displayed as a percentage of rated thermal capacity.

Remaining operating time before overload tripping

Predictive data calculated by the thermal overload protection function. The time is used by facility managers to optimize process management in real time by deciding to:

- interrupt according to procedures
- continue operation with inhibition of thermal protection on overloaded machine.

Waiting time after overload tripping

Predictive data calculated by the thermal overload protection function. Waiting time to avoid further tripping of thermal overload protection by premature re-energizing of insufficiently cooled down equipment.

Running hours counter / operating time

Equipment is considered to be running whenever a phase current is over 0.1 lb. Cumulative operating time is given in hours.

Motor starting / overload current and time

A motor is considered to be starting or overloaded when a phase current is over 1.2 lb. For each start / overload, Sepam stores:

- maximum current drawn by the motor
- starting / overload time.

The values are stored until the following start / overload.

Number of starts before inhibition/start inhibit time

Indicates the number of starts still allowed by the starts per hour protection function and, if the number is zero, the waiting time before starting is allowed again.

Apparent positive sequence impedance Zd

Value calculated to facilitate the implementation of the underimpedance field loss protection (ANSI 40).

Apparent phase-to-phase impedances Z21, Z32, Z13

Values calculated to facilitate the implementation of the backup underimpedance protection function (ANSI 21B).

Capacitance

Measurement, for each phase, of the total capacitance of the connected capacitor bank. This measurement is used to monitor the condition of the capacitors.

Motor Start Report (MSR)

This function, available only in motor applications, can stock during a configured duration multiple files of 144 data samples selected.

Read

The files can be viewed:

a) after downloading, on a PC screen, using the WaveWin software b) on the Sepam display using the Diagnosis menu.

- selection zone
- Name of the 1st variable associated 2 with the Y-axis
- Selection zone for the variable to be 3 associated with the Y-axis
- Maximum value observed for the recorded Δ

96

Visualisation of 3 graphics MSR via an integrated synoptic HMI.

Schneider

Description

Caractéristiques	
Paramètres de configuration	on
Content of a COMTRADE file	 Fichier de configuration (*.CFG): date, variable characteristics, transformation ratio of the selected variable values Samples file (*.DAT) : recorded variables
Total file duration	2 s to 144 s
Sampling frequency	Depends on the configured duration (144 s maximum). Example: For a duration of 144 s the frequency is 1 Hz, for a duration of 2 s the frequency is 72 Hz.
Variables available for recording	See the table of available data . p. 99/100
Number of files	 1 to 5 with standard cartridge 1 to 20 with extended cartridge
Number of variables per file	 1 to 5 with standard cartridge 1 to 10 with extended cartridge
Source of starting and stopping	 SFT 2841 software Logic equation or Logipam TC Logic or GOOSE input
File format	COMTRADE 97
Not	a : These parameters are configured with the SFT2841 software.

Motor Start Trend (MST)

This function, only available for motor applications, is related to the Motor start trend function. It is used to calculate and display in the form of curves the minimum, demand and maximum values for each value.

These recalculated values which are stored in a file of 144 samples covering a 30-day period. When the current 30-day period has ended, it is automatically archived in COMTRADE format and will no longer be able to be viewed on the Sepam display

The number of files available varies between 12 and 18 depending on the type of memory cartridge (standard or extended) installed on Sepam

The trends are only recalculated at the end of each Motor start report.

Calculating an MST using the available MSRs.

- 1 Time tagging of the current file
- 2 Selection of the variable to be associated with the Y-axis
- 3 Name of the analyzed variable
- 4 Duration of read time for each file

Description

Sepam self-diagnosis

Sepam includes a number of self-tests carried out in the base unit and optional modules. The purpose of the self-tests is to: detect internal failures that may cause nuisance

tripping or failed fault tripping

- put Sepam in fail-safe position to avoid any unwanted exerction
- unwanted operation

■ alert the facility manager of the need for maintenance operations.

Internal failure

Two categories of internal failures are monitored: major failures: Sepam shutdown (to fail-safe position).

The protection functions are inhibited, the output relays are forced to drop out and the "Watchdog" output indicates Sepam shutdown

minor failures: downgraded Sepam operation. Sepam's main functions are operational and equipment protection is ensured.

Battery monitoring

Monitoring of battery voltage to guarantee data is saved in the event of an outage. A battery fault generates an alarm.

Detection of plugged connectors

The system checks that the current or voltage sensors are plugged in. A missing connector is a major failure.

Configuration checking

The system checks that the optional modules configured are present and working correctly. The absence or failure of a remote module is a minor failure, the absence or failure of a logic input/output module is a major failure.

Switchgear diagnosis assistance

Switchgear diagnosis data give facility managers information on:

- mechanical condition of breaking device
- Sepam auxiliaries

and assist them for preventive and curative switchgear maintenance actions. The data are to be compared to switchgear manufacturer data.

ANSI 60/60FL - CT/VT supervision

Used to monitor the entire metering chain:

- CT and VT sensors
- connection
- Sepam analog inputs.
- Monitoring includes:
- consistency checking of currents and voltages measured

■ acquisition of phase or residual voltage transformer protection fuse blown contacts.

In the event of a loss of current or voltage measurement data, the assigned protection functions may be inhibited to avoid nuisance tripping.

ANSI 74 - Trip/closing circuit supervision

To detect trip circuit and closing circuit failures, Sepam monitors:

- shunt trip coil connection
- closing coil connection
- matching of breaking device open/closed position contacts
- execution of breaking device open and close orders.

The trip and closing circuits are only supervised when connected as shown below.

Connection for shunt trip coil monitoring.

Connection for undervoltage trip coil monitoring.

Connection for closing circuit supervision

Cumulative breaking current monitoring

- Six cumulative currents are proposed to assess breaking device pole condition:
- total cumulative breaking current
- cumulative breaking current between 0 and 2 In
- cumulative breaking current between 2 In and 5 In
- cumulative breaking current between 5 In and 10 In
- cumulative breaking current between 10 In and 40 In
- cumulative breaking current > 40 In.

Each time the breaking device opens, the breaking current is added to the cumulative total and to the appropriate range of cumulative breaking current. Cumulative breaking current is given in (kA)².

An alarm can be generated when the total cumulative breaking current exceeds a set point.

Number of operations

Cumulative number of opening operations performed by the breaking device.

Circuit breaker operating time and charging time Number of rackouts

Used to assess the condition of the breaking device operating mechanism.

Characteristics

						Available data	
Functions		Measurement	Accuracy	MSA141	Saving	MSR/MST	
		range	(1)			Designation	Units
Metering							
Phase current		0,02 to 40 In	±0,5 %			11, 12, 13	А
Residual current	Measured	0,005 to 20 In	±1 %			I0m	A
	Calculated	0,005 to 40 In	±1 %			I0c	А
Demand current		0,02 to 40 In	±0,5 %			l1moy, l2moy, l3moy	A
Peak demand currer	nt	0,02 to 40 In	±0,5 %			l1max, l2max, l3max	A
Voltage meterin	g						
Phase-to-phase volt	age	0,06 to 1,2 Unp	±0,5 %			U21, U32, U31	V
Phase-to-neutral vol	tage	0,06 to 1,2 Vnp	±0,5 %			V1, V2, V3	V
Residual voltage		0.04 to 3 Vnp	±1 %			V0	V
Neutral point voltage	2	0.04 to 3 Vntp	±1 %			Vnt	V
Positive sequence v	oltage	0.05 to 1.2 Vnp	±2 %			Vd	V
Negative sequence	voltage	0.05 to 1.2 Vnp	±2 %			Vi	V
Frequency	Main channels (f)	25 to 65 Hz	±0,02 Hz			F	Hz
Power metering	1		.,.				
Active power (total o	r per phase)	0.015 Sn to 999 MW	±1 %			Р	MW
Active power per pha	ase	,				P1, P2, P3	MW
Peak demand active	power	0,015 Sn to 999 MW	±1 %			Pmax	MW
Reactive power (tota	al or per phase)	0,015 Sn to 999 Mvar	±1 %			Q	Mvar
Reactive power per p	phase					Q1, Q2, Q3	Mvar
Peak demand reactive	ve power	0,015 Sn to 999 Mvar	±1 %			Qmax	Mvar
Apparent power (tota	al or per phase)	0.015 Sn to 999 MVA	±1 %			S	MVA
Apparent power per	phase	- ,,				S1, S2, S3	MVA
Peak demand appar	ent power					Smax	MVA
Power factor $(\cos \varphi)$!	-1 to +1 (CAP/IND)	±0,01			cosPhi	MVA
Apparent power	Measured (+ and -)	· · · · · · · · · · · · · · · · · · ·	,			Eam+, Eam-	MW.h
	Calculated (+ and -)	0 to 2,1.108 MW.h	±1 % ±1 digit			Eac+, Eac-	MW.h
Reactive power	Measured (+ and -)	,	Ŭ			Erm+, Erm-	Mvar.h
	Calculated (+ and -)	0 to 2,1.108 Mvar.h	±1 % ±1 digit			Erc+, Erc-	Mvar.h
Other metering							
0			+1 °C				
		-30 to +200 °C	de +20 to +140 °C				
Iemperature		0r 22 to ±302 °E	±1,8 °F	•		11 to 116	°C/°F
		-22 10 +392 1	de +68 to +284 °F				
Rotation speed		0 to 7200 tr/mn	±1 tr/mn			Rot104	tr / mn
Network diagno	osis assistance	<u></u>					
Tripping context							
Tripping current		0,02 to 40 In	±5 %				
Number of trips		0 to 65535	-				
Negative sequence /	/ unbalance	1 to 500 % lb	±2 %			li / lb	% lb or % l'b
Total harmonic distortion, current 0 to 100 %		0 to 100 %	±1 %			lthd	%
Total harmonic distortion, voltage 0 to 100 %		0 to 100 %	±1 %			Uthd	%
Phase displacement φ 0 (between V0 & I0) 0 to 35		0 to 359°	±2°			φ0	0
Phase displacement ϕ 1, ϕ 2, ϕ 3 (between V & I)		0 to 359°	±2°			φ 1, φ 2, φ 3	٥
Thermal capacity used						Ech	%
Running hours count	ter					СН	hours
Disturbance recordin	ng						
Amplitude difference	2	0 to 1,2 Usync1	±1 %				
Frequency difference	e	0 to 10 Hz	±0,5 Hz				
Phase difference		0 to 359°	±2°				
Out-of-sync contex							

available on MSA141 analog output module, according to setup
 saved in the event of auxiliary supply outage, even without battery
 saved by battery in the event of auxiliary supply outage
 (1) Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, cos φ > 0.8..

Characteristics

Functions	Measurement		MSA141	Saving	Availad	MST
	range	(.)			Description	Units
Machine operating assistance					Decemption	O Into
Phase-to-phase voltages U21 U22 U13	0.06 to 1.2 Unp	+0.5 %			U21 U22 U13	V
1. 12. 13	0.02 to 40 ln	±0.5 %			11.12.13	A
Temperature	-30 to +200 °C or -22 to +392 °F	±1 °C de +20 to +140 °C ±1,8 °F de +68 to +284 °F			T1 à T16	°C/°F
Rotor speed of rotation caculated via 49RMS motor					Rot49	tr / mn
Rotor speed of rotation mesured via I104 input	0 to 7200 tr/mn	±1 tr/mn			Rot104	tr / mn
Motor thermal capacity used $^{(2)}$ 0 to 800 % (100 % for I phase = Ib)	±1 %	-			М	pu
Rotor thermal capacity used ⁽²⁾					W	pu
Rotor resistance ⁽²⁾					Rr+	Ω
Stator thermal capacity used (2)					E	pu
Stator resistance (3)					Rs	Ω
Positive-sequence current					ld	Α
Negative-sequence current					li	Α
Positive-sequence voltage	0,05 to 1,2 Vnp	±2 %			Vd	V
Negative-sequence voltage	0,05 to 1,2 Vnp	±2 %			Vi	V
Residual current Measured	0,005 to 20 In	±1 %			10	Α
Calculated	0,005 to 40 In	±1 %			10_S	A
Measured residual voltage					V0	V
Motor torque ⁽²⁾					С	pu
Slip (calculated via 49RMS motor)					g	pu
Frequency ⁽⁴⁾					F	Hz
Remaining operating time before overload tripping	0 à 999 mn	±1 mn				
Waiting time after overload tripping	0 à 999 mn	±1 mn				
Running hours counter / operating time	0 à 65535 heures	±1 % ou ±0,5 h				
Starting current	1,2 lb à 40 ln	±5 %				
Starting time	0 à 300 s	±300 ms				
Number of starts before inhibition	0 à 60	-				
Start inhibit time	0 à 360 mn	±1 mn				
Phase displacement φ1, φ2, φ3 between I)	0 à 359°	±2°				
Apparent impedance Zd, Z21, Z32, Z13	0 à 200 kΩ	±5 %				
Capacitance	0 à 30 F	±5 %				
Switchgear diagnosis assistance						
Cumulative breaking current	0 à 65535 kA²	±10 %				
Number of operations	0 à 4.10 ⁹	-				
Operating time	20 à 100 ms	±1 ms				
Charging time	1 à 20 ms	±0,5 s				
Number of rackouts	0 à 65535	-				

available on MSA141 analog output module, according to setup

saved in the event of auxiliary supply outage, even without battery
 saved by battery in the event of auxiliary supply outage.
 Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, cos φ > 0.8..

The value used is that provided by the 49RMS motor thermal overload protection if this has been activated. The value is 0 if the 49RMS generic thermal (2) overload protection has been activated.

(3) The value used is that for the active 49RMS protection: motor thermal overload or generic thermal overload.

Only available for the main voltage channels. (4)

Current protection functions

ANSI 50/51 - Phase overcurrent

Phase-to-phase short-circuit protection.

2 modes:

 overcurrent protection sensitive to the highest phase current measured

machine differential protection sensitive to the

highest differential phase currents obtained in selfbalancing schemes.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT), IDMT (choice of 16 standardized
- IDMT curves) or customized curve
- with or without timer hold
- tripping confirmed or unconfirmed, according to parameter setting:
- unconfirmed tripping: standard
- □ tripping confirmed by negative sequence overvoltage protection (ANSI 47, unit 1), as backup for distant

2-phase short-circuits □ tripping confirmed by undervoltage protection (A)[2] 27, whit 1) as beginn for above to above

(ANSI 27, unit 1), as backup for phase-to-phase short-circuits in networks with low short-circuit power.

ANSI 50N/51N or 50G/51G - Earth fault

Earth fault protection based on measured or calculated residual current values:

- ANSI 50N/51N: residual current calculated or
- measured by 3 phase current sensors
- ANSI 50G/51G: residual current measured directly by a specific sensor.

Characteristics

- 2 groups of settings
- definite time (DT), IDMT (choice of 17 standardized
- IDMT curves) or customized curve
- with or without timer hold

■ second harmonic restraint to ensure stability during transformer energizing, activated by parameter setting.

ANSI 50BF - Breaker failure

If a breaker fails to be triggered by a tripping order, as detected by the non-extinction of the fault current, this backup protection sends a tripping order to the upstream or adjacent breakers.

ANSI 46 - Negative sequence / unbalance

Protection against phase unbalance, detected by the measurement of negative sequence current.

sensitive protection to detect 2-phase faults at the ends of long lines

■ protection of equipment against temperature buildup, caused by an unbalanced power supply, phase inversion or loss of phase, and against phase current unbalance.

Characteristi cs

■ 1 definite time (DT) curve

■ 9 IDMT curves: 4 IEC curves and 3 IEEE curves, 1 ANSI curve in RI² and 1 specific Schneider curve

ANSI 49RMS - Thermal overload

Protection against thermal damage caused by overloads on

- machines (transformers, motors or generators)
- cables
- capacitors

The thermal capacity used is calculated according to a mathematical model which takes into account:

- current RMS values
- ambient temperature
- negative sequence current, a cause of motor rotor temperature rise.

The thermal capacity used calculations may be used to calculate predictive data for process control assistance.

The protection may be inhibited by a logic input when required by process control conditions.

Thermal overload for machines - Characteristics

- 2 groups of settings
- 1 adjustable alarm set point
- 1 adjustable tripping set point

■ adjustable initial thermal capacity used setting, to adapt protection characteristics to fit manufacturer's thermal withstand curves

equipment heating and cooling time constants.

The cooling time constant may be calculated automatically based on measurement of the equipment temperature by a sensor.

Thermal overload for cables - Characteristics

- 1 group of settings
- cable current carrying capacity, which determines alarm and trip set points
- cable heating and cooling time constants.

Thermal overload for capacitors - Characteristics

- 1 group of settings
- alarm current, which determines the alarm set point
- overload current, which determines the tripping set point
- hot tripping time and current setting, which determine a point on the tripping curve.

Recloser

ANSI 79

Automation device used to limit down time after tripping due to transient or semipermanent faults on overhead lines. The recloser orders automatic reclosing of the breaking device after the time delay required to restore the insulation has elapsed. Recloser operation is easy to adapt for different operating modes by parameter setting.

Characteristics

■ 1 to 4 reclosing cycles, each cycle has an adjustable dead time

adjustable, independent reclaim time and safety time until recloser ready time delays

 cycle activation linked to instantaneous or time-delayed short-circuit protection function (ANSI 50/51, 50N/51N, 67, 67N/67NC) outputs by parameter setting
 inhibition/locking out of recloser by logic input.

Synchro-check

ANSI 25

This function checks the voltages upstream and downstream of a circuit breaker and allows closing when the differences in amplitude, frequency and phase are within authorized limits.

Characteristics

adjustable and independent set points for differences in voltage, frequency and phase

- adjustable lead time to take into account the circuit-breaker closing time
- 5 possible operating modes to take no-voltage conditions into account.

DE8814(

Protection Description

Trip

Tripping characteristic of ANSI 67N/67NC type 2 protection (characteristic angle $\theta 0 \neq 0^{\circ}$).

Tripping characteristic of ANSI 67N/67NC type 3 protection.

Directional current protection

ANSI 67 - Directional phase overcurrent

Phase-to-phase short-circuit protection, with selective tripping according to fault current direction.

It comprises a phase overcurrent function associated with direction detection, and picks up if the phase overcurrent function in the chosen direction (line or busbar) is activated for at least one of the 3 phases.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- choice of tripping direction
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve

with voltage memory to make the protection insensitive to loss of polarization voltage at the time of the fault

with or without timer hold.

ANSI 67N/67NC - Directional earth fault

Earth fault protection, with selective tripping according to fault current direction. 2 types of operation:

- type 1, projection
- type 2, according to the magnitude of the residual current phasor.

ANSI 67N/67NC type 1

Directional earth fault protection for impedant, isolated or compensated neutral systems, based on the projection of measured residual current.

Type 1 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- characteristic projection angle
- no timer hold

■ with voltage memory to make the protection insensitive to recurrent faults in compensated neutral systems.

ANSI 67N/67NC type 2

Directional overcurrent protection for impedance and solidly earthed systems, based on measured or calculated residual current.

It comprises an earth fault function associated with direction detection, and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

- Type 2 characteristics
- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized
- curve
- choice of tripping direction
- with or without timer hold.

ANSI 67N/67NC type 3

Directional overcurrent protection for distribution networks in which the neutral earthing system varies according to the operating mode, based on measured residual current.

It comprises an earth fault function associated with direction detection (angular sector tripping zone defined by 2 adjustable angles), and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

This protectionfunction complies with the CEI 0-16 Italian specification.

- **Type 3 characteristics**
- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- no timer hold

Directional power protection functions

ANSI 32P - Directional active overpower

Two-way protection based on calculated active power, for the following applications:

■ active overpower protection to detect overloads and allow load shedding

■ reverse active power protection:

□ against generators running like motors when the generators consume active power

against motors running like generators when the motors supply active power.

ANSI 32Q - Directional reactive overpower

Two-way protection based on calculated reactive power to detect field loss on synchronous machines: reactive overpower protection for motors which consume more reactive power with field loss

■ reverse reactive overpower protection for generators which consume reactive power with field loss.

ANSI 37P - Directional active underpower

Two-way protection based on calculated active power

Checking of active power flows: to adapt the number of parallel sources to fit the

own generating unit.

network load power demand to create an isolated system in an installation with its

Machine protection functions

ANSI 37 - Phase undercurrent

Protection of pumps against the consequences of a loss of priming by the detection of motor no-load operation.

It is sensitive to a minimum of current in phase 1, remains stable during breaker tripping and may be inhibited by a logic input.

ANSI 48/51LR - Locked rotor / excessive starting time

Protection of motors against overheating caused by:

■ excessive motor starting time due to overloads (e.g. conveyor) or insufficient supply voltage.

The reacceleration of a motor that is not shut down, indicated by a logic input, may be considered as starting.

Iocked rotor due to motor load (e.g. crusher):

□ in normal operation, after a normal start

□ directly upon starting, before the detection of excessive starting time, with detection of locked rotor by a zero speed detector connected to a logic input, or by the underspeed function.

ANSI 66 - Starts per hour

Protection against motor overheating caused by:

■ too frequent starts: motor energizing is inhibited when the maximum allowable number of starts is reached, after counting of:

starts per hour (or adjustable period)

□ consecutive motor hot or cold starts (reacceleration of a motor that is not shut down, indicated by a logic input, may be counted as a start)

■ starts too close together in time: motor re-energizing after a shutdown is only allowed after an adjustable waiting time.

ANSI 40 - Field loss (underimpedance)

Protection of synchronous machines against field loss, based on the calculation of positive sequence impedance on the machine terminals or transformer terminals in the case of transformer-machine units.

Characteristics

■ 2 circular characteristics defined by reactances Xa, Xb and Xc

2 circular tripping characteristics of ANSI 40 protection.

■ tripping when the machine's positive sequence impedance enters one of the circular characteristics.

■ definite (DT) time delay for each circular characteristic

■ setting assistance function included in SFT2841 software to calculate the values of Xa, Xb and Xc according to the electrical characteristics of the machine (and transformer, when applicable).

ANSI 12 - Overspeed

Detection of machine overspeed, based on the speed calculated by pulse-counting, to detect synchronous generator racing due to loss of synchronism, or for process monitoring, for example.

ANSI 14 - Underspeed

Machine speed monitoring based on the speed calculated by pulse-counting:

detection of machine underspeed after starting, for process monitoring, for example

■ zero speed data for detection of locked rotor upon starting.

ANSI 50V/51V - Voltage-restrained overcurrent

Phase-to-phase short-circuit protection, for generators. The current tripping set point is voltage-adjusted in order to be sensitive to faults close to the generator which cause voltage drops and lowers the short-circuit current.

Characteristics

instantaneous or time-delayed tripping

■ definite time (DT), IDMT (choice of 16 standardized

IDMT curves) or customized curve

with or without timer hold

ANSI 21B - Underimpedance

Phase-to-phase short-circuit protection, for generators, based on the calculation of apparent phase-to-phase impedance.

 $Z_{21} = \frac{U_{21}}{I_{2} - I_{1}}$

E88143

apparent impedance between phases 1 and 2.

Circular tripping characteristic of ANSI 21B protection.

■ time-delayed definite time (DT) tripping when one of the three apparent impedances enters the circular tripping characteristic.

ANSI 26/63 - Thermostat/Buchholz

Protection of transformers against temperature rise and internal faults via logic inputs linked to devices integrated in the transformer.

ANSI 38/49T - Temperature monitoring

Protection that detects abnormal temperature build-up by measuring the temperature inside equipment fitted with sensors:

■ transformer: protection of primary and secondary windings

motor and generator: protection of stator windings and bearings.

Characteristics

- 16 Pt100, NI100 or Ni120 type RTDs
- 2 adjustable independent set points for each RTD (alarm and trip).

Voltage protection functions

ANSI 27D - Positive sequence

undervoltage

Protection of motors against faulty operation due to insufficient or unbalanced network voltage, and detection of reverse rotation direction.

ANSI 27R - Remanent undervoltage

Protection used to check that remanent voltage sustained by rotating machines has been cleared before allowing the busbar supplying the machines to be re-energized, to avoid electrical and mechanical transients.

ANSI 27 - Undervoltage

Protection of motors against voltage sags or detection of abnormally low network voltage to trigger automatic load shedding or source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

Characteristics

■ definite time (DT) curve

■ IDMT curve.

ANSI 59 - Overvoltage

Detection of abnormally high network voltage or checking for sufficient voltage to enable source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

ANSI 59N - Neutral voltage displacement

Detection of insulation faults by measuring residual voltage

ANSI 59N: in isolated neutral systems

■ ANSI 59N/64G1: in stator windings of generators with earthed neutral. Protects the 85 % to 90 % of the winding, terminal end, not protected by the ANSI 27TN/64G2 function, third harmonic undervoltage.

Characteristics

■ definite time (DT) curve

IDMT curve.

ANSI 47 - Negative sequence overvoltage

Protection against phase unbalance resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage.

FRT (fault ride through) Custom "Grid code" curve

Production installations must stay connected to the grid whenever the voltage is higher than that defined by the "Grid code" curve. The custom curve is defined point by point, with the disconnection time Tc in seconds on the X-axis and the voltage U/Un in pu on the Y-axis.

Frequency protection functions

ANSI 81H - Overfrequency

Detection of abnormally high frequency compared to the rated frequency, to monitor power supply quality.

ANSI 81L - Underfrequency

Detection of abnormally low frequency compared to the rated frequency, to monitor power supply quality.

The protection may be used for overall tripping or load shedding. Protection stability is ensured in the event of the loss of the main source and presence of remanent voltage by a restraint in the event of a continuous decrease of the frequency, which is activated by parameter setting.

ANSI 81R - Rate of change of frequency

Protection function used for fast disconnection of a generator or load shedding control. Based on the calculation of the frequency variation, it is insensitive to transient voltage disturbances and therefore more stable than a phase-shift protection function.

Disconnection

In installations with autonomous production means connected to a utility, the "rate of change of frequency" protection function is used to detect loss of the main system in view of opening the incoming circuit breaker to:

protect the generators from a reconnection without checking synchronization
 avoid supplying loads outside the installation.

Load shedding

40EN

The "rate of change of frequency" protection function is used for load shedding in combination with the underfrequency protection to:

either accelerate shedding in the event of a large overload

or inhibit shedding following a sudden drop in frequency due to a problem that should not be solved by shedding.

Custom "Grid code" curve

Protection Tripping curves

Customized tripping curve Defined point by point using the SFT2841 setting and operating software tool, this curve may be used to solve all special cases involving protection coordination or revamping.

IDMT tripping curves

Current IDM T tripping curves

Multiple IDMT tripping curves are offered, to cover most applications: ■ IEC curves (SIT, VIT/LTI, EIT) ■ IEEE curves (MI, VI, EI)

- usual curves (UIT, RI, IAC).

Customized tripping curve set using SFT2841 software.

Equation

$$\mathsf{t}\,\mathsf{d}(\mathsf{I}) = \frac{\mathsf{k}}{\left(\frac{\mathsf{I}}{\mathsf{I}\mathsf{s}}\right)^{\alpha} - 1} \times \frac{\mathsf{T}}{\beta}$$

Curve type	Coefficient values			
	k	α	β	
Standard inverse / A	0.14	0.02	2.97	
Very inverse / B	13.5	1	1.50	
Long time inverse / B	120	1	13.33	
Extremely inverse / C	80	2	0.808	
Ultra inverse	315.2	2.5	1	

RI curve

Equation:

$$td(I) = \frac{1}{0,339 - 0,236 \left(\frac{I}{Is}\right)^{-1}} \times \frac{T}{3,1706}$$

Equation

Curve type	Coefficient values				
	Α	В	р	β	
Moderately inverse	0.010	0.023	0.02	0.241	
Very inverse	3.922	0.098	2	0.138	
Extremely inverse	5.64	0.0243	2	0.081	

IAC curves

Curve type	Coeffic	Coefficient values				
	А	В	С	D	Е	β
Inverse	0.208	0.863	0.800	-0.418	0.195	0.297
Very inverse	0.090	0.795	0.100	-1.288	7.958	0.165
Extremely inverse	0.004	0.638	0.620	1.787	0.246	0.092

Functions Sepam series 60

Protection

Tripping curves

	Voltage/frequency ratio IDMT tripping curves			
Equation for ANSI 27 - undervoltage	Curve type	Р		
With $G = V/f$ or U/f	А	0.5		
$td(G) = \frac{1}{1 + 1} \times T$	В	1		
$\left(\frac{\mathbf{G}}{\mathbf{G}_{\mathbf{p}}}-1\right)^{\mathbf{p}}$	С	2		
Functions Sepam series 60

Protection Main characteristics

Setting of IDMT tripping curves,

Time delay T or TMS factor

The time delays of current IDMT tripping curves (except for customized and RI curves) may be set as follows:

- time T, operating time at 10 x Is
- TMS factor, factor shown as T/b in the equations on the left.

Timer hold

The adjustable timer hold T1 is used for:

detection of restriking faults (DT curve)

■ coordination with electromechanical relays (IDMT curve).

Timer hold may be inhibited if necessary.

2 groups of settings

Phase-to-phase and phase-to-earth short-circuit protection

Each unit has 2 groups of settings, A and B, to adapt the settings to suit the network configuration.

The active group of settings (A or B) is set by a logic input or the communication link. **Example of use: normal / backup mode network**

■ group A for network protection in normal mode, when the network is supplied by the utility

■ group B for network protection in backup mode, when the network is supplied by a backup generator.

Thermal overload for machines

Each unit has 2 groups of settings to protect equipment that has two operating modes.

Examples of use:

■ transformers: switching of groups of settings by logic input, according to transformer ventilation operating mode, natural or forced ventilation (ONAN or ONAF)

■ motors: switching of groups of settings according to current set point, to take into account the thermal withstand of motors with locked rotors.

Measurement origin

The measurement origin needs to be indicated for each unit of the protection functions that may use measurements of different origins.

The setting links a measurement to a protection unit and allows the protection units to be distributed optimally among the measurements available according to the sensors connected to the analog inputs.

Example: distribution of ANSI 50N/51N function units for transformer earth fault protection:

- 2 units linked to measured I0 for transformer primary protection
- 2 units linked to I0S for protection upstream of the transformer.

Summary table

Characteristics	Protection functions
2 groups of settings A et B	50/51, 50N/51N, 67, 67N/67NC
2 groups of settings, operating modes 1 and 2	49RMS Machine
IEC IDMT curves	50/51, 50N/51N, 50V/51V, 67,
	67N/67NC type 2, 46
IEEE IDMT curves	50/51, 50N/51N, 50V/51V, 67,
	67N/67NC type 2, 46
Usual IDMT curves	50/51, 50N/51N, 50V/51V, 67,
	67N/67NC type 2
EPATR curves	50N/51N
Voltage IDMT curves	27, 59N
Customized curve	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2
Timer hold	50/51, 50N/51N, 50V/51V, 67,
	67N/67NC type 2

Detection of restriking faults with adjustable timer hold.

Measurement origin: example.

109

Functions Sepam series 60

Protection Setting ranges

Functions	Settings		Time delays
ANSI 12 - Overspeed			
-	100 to 160 % of Wn		1 to 300 s
ANSI 14 - Underspeed			
	10 to 100 % of Wn		1 to 300 s
ANSI 21B - Underimpedance			
Impedance Zs	0.05 to 2.00 Vn/lb		0.2 to 300 s
ANSI 25 - Synchro-check			
Measured voltages	Phase-to-phase	Phase-to-neutral	
Rated primary phase-to-phase voltage			
Unp sync1 (Vnp sync1 = Unp sync1/ $\sqrt{3}$)	220 V to 250 kV	220 V to 250 kV	
Unp sync2 (Vnp sync2 = Unp sync2/ $\sqrt{3}$)	220 V to 250 KV	220 V to 250 kV	
Line sync1	90 V to 120 V	90 V to 230 V	
	90 V to 120 V	90 V to 230 V	
Synchro-check setpoints	56 1 12 0 1	30 V 10 200 V	
dUs set point	3 % to 30 % of Unp sync1	3 % to 30 % of Vnp sync1	
dfs set point	0.05 to 0.5 Hz	0,05 to 0,5 Hz	
dPhi set point	5 to 80°	5 to 80°	
Us high set point	70 % to 110 % Unp sync1	70 % to 110 % Vnp sync1	
Us low set point	10 % to 70 % Unp sync1	10 % to 70 % Vnp sync1	
Other settings			
Lead time	0 to 0.5 s	0 to 0.5 s	
Operating modes: no-voltage conditions	Dead1 AND Live2	Dead1 AND Live2	
for which coupling is allowed	Live1 AND Dead2	Live1 AND Dead2	
	Dead1 OR Dead2	Dead1 OR Dead2	
	Dead1 AND Dead2	Dead1 OIC Dead2	
ANSI 27 - Undervoltage (L-L) or (L	N)	Bodd Fride Bodde	
Tripping curve	Definite time		
	IDMT		
Set point	5 to 100 % of Unp		0.05 to 300 s
ANSI 27D - Positive sequence un	dervoltage		
Set point and time delay	15 to 60 % of Unp		0.05 to 300 s
ANSI 27R - Remanent undervolta	ge		
Set point and time delay	5 to 100 % of Unp		0.05 to 300 s
ANSI 32P - Directional active ove	rpower		
	1 to 120 % of Sn (1)		0.1 s to 300 s
ANSI 32Q - Directional reactive of	verpower		
	5 to 120 % of Sn (1)		0.1 s to 300 s
ANSI 37 - Phase undercurrent			
ANGLOZD Dive sticked a stick wash	0.05 to 1 lb		0.05 to 300 s
ANSI 37P - Directional active und	Eta 100 % of Sm (1)		0.1.0 to 200.0
ANSI 28/40T Tomporature monit	5 to 100 % of Sit (9		0.1 \$ 10 300 \$
Alarm set point TS1	0 °C to 180 °C or 32 °E to 356 °E		
Trip set point TS2	0 °C to 180 °C or 32 °E to 356 °E		
ANSI 40 - Field loss (underimped	ance)		
Common point: Xa	0.02 Vn/lb to 0.2 Vn/lb + 187.5 kΩ		
Circle 1: Xb	0.2 Vn/lb to 1.4 Vn/lb + 187.5 kΩ		0.05 to 300 s
Circle 2: Xc	0.6 Vn/lb to 3 Vn/lb + 187.5 kΩ		0.1 s to 300 s
ANSI 46 - Negative sequence / un	balance		
Tripping curve	Definite time		
	Schneider Electric		
	EC: SIT/A, LTI/B, VIT/B, EIT/C		
	IEEE: MI (D), VI (E), EI (F)		
lo oot point	RI ² (setting constant from 1 to 100)	Definite time	0.1 to 200 o
וא אפי אסוווג	0.1 to 0.5 lb (Schneider Electric)		
			0.1 (0.15
	0.03 to 0.2 lb (RI ²)		

(1) Sn = $\sqrt{3}$.In.Unp.

Protection Setting ranges

Functions	Settings		Time delay	S
ANSI 47 - Negative sequence ov	vervoltage			
Set point and time delay	1 to 50 % of Unp		0.05 to 300 s	
ANSI 48/51LR -Locked rotor / ex	cessive starting time			
Is set point	0.5 lb to 5 lb	ST starting time	0.5 to 300 s	
		LT and LTS time delays	0.05 to 300 s	
ANSI 49RMS - Thermal overload	l for cables			
Admissible current	1 to 1.73 lb			
Time constant T1	1 to 600 mn			
ANSI 49RMS - Thermal overload	l for capacitors			
Alarm current		1.05 lb to 1.70 lb		
Trip current		1.05 lb to 1.70 lb		
Positioning of the hot tripping curve	Current setting	1.02 x trip current to 2 lb		
	Time setting	1 to 2000 minutes	urrent and current a	otting)
ANSI 40PMS Thormal overload	l for machines	(variable range depending on the tip c	Mode 1	Mode 2
Accounting for pagative sequence com	anon machines	0 2 25 4 5 9	Model	WOUC 2
Accounting for negative sequence comp		0-2.25-4.5-9	T1: 1 to 600 mm	T1: 1 to 600 mp
Time constant	Cooling		T2: 5 to 600 mp	T 1. 1 to 600 mm
Alarm and tripping set points (Es1 and E	 (\$2)	0 to 300 % of rated thermal capacity	12.0100001111	12.0100001111
Initial thermal capacity used (Fs0)		0 to 100 %		
Switching of thermal settings condition		by logic input		
		by Is set point adjustable from 0.25 to 8	lb	
Maximum equipement temperature		60 to 200 °C (140 °C to 392 °F)		
ANSI 49RMS - Motor thermal ov	erload			
Measurement origin	11, 12, 13			
Choice of thermal model	2 time constants/generic (see settings a	ssociated with generic thermal overload)		
Current set point - change of thermal		1 to 10 pu of lb (± 0,1 pu of lb)		
settings				
Characteristic times	Operating time accuracy	±2% or ±1 s		
Stator thermal settings		4 10 000 000 1 4 000		
lime constants	Motor thermal capacity used (τ long)	1 to 600 mn ± 1 mn		
	Stator thermal capacity used (τ short)	1 to 60 mn ± 0,1 mn		
	Cooling (t cool)	5 to 600 mn ± 1 mn		
Tripping current set point (K)	50 to 173 % of lb (± 1 % of lb)			
Alarm current set point	50 to 173 % of lb (± 1 % of lb)			
Thermal exchange coefficient between	0 to 1 (± 0,01)			
the stator and the motor (α)				
Current characterizing hot state				
Accounting for ambient temperature (Tma	yes 7 110 x) 70 to 250 °C (\pm 1 °C) or 158 to 482 °E (\pm	1°E)		
Rotor thermal settings	X) 70 10 230 C (± 1 C) 01 138 10 482 T (±			
Locked rotor amperes (II.)	1 to 10 pu of lb (+ 0.01 pu of lb)			
Locked rotor torque (LRT)	0.2 to 2 pu of nominal torque (+/- 0.01 pu	u of nominal torque)		
Locked rotor cold limit time (Tc)	1 to 300 s (± 0.1 s)			
Locked rotor hot limit time (Th)	1 to 300 s (± 0.1 s)			
ANSI 49RMS - Transformer ther	maloverload			
Measurement origin	11, 12, 13			
Choice of thermal model	Dry-type transformer			
	Immersed transformer			
	Generic			
Type of dry-type transformer	Natural ventilation (AN) / Forced ventila	tion (AF)		
Type of oil-filled transformere	Distribution ONAN / Power ONAN / ON/	AF / OF / OD		
Alarm set point (0 alarme)	Immersed transformer: 98 to 160 °C (± 1	1 °C) or 208 to 320 °F (± 1 °F)		
	Dry-type transformer: 95 to 245 °C (± 1	°C) or 203 to 473 °F (± 1 °F)		
Tripping set point (θ trip)	Immersed transformer: 98 to 160 °C (± 7	1 °C) or 208 to 320 °F (± 1 °F)		
	Dry-type transformer: 95 to 245 °C (± 1	°C) or 203 to 473 °F (± 1 °F)		
$\frac{\text{lime constant for dry-type transfo}(\tau)}{\text{Time constant for dry-type transfo}(\tau)}$	1 to 600 mn ± 1 mn	4 1 200		
ime constant for oil-filled transfo	winding (t wdg)	1 to 600 mn ± 1 mn		
	οιι (τ οιι)	ວ ເບ ouu mn ± 1 mn		

Protection Setting ranges

Eunctio	ns Sottin	as	Time delays
ANSI 50BE - Broaker failure	lio Octain	93	
Processo of ourrent	0.2 to 2 lp		
	0.2 to 2 m		
	0.05 \$ 10 3 \$		
ANSI 50/51 - Phase overcurren	IL Tripping time delay	Timer hold	
	Definite time		
	BI		
	IEC: SIT/A LTI/B VIT/B EIT/C		
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IA: I, VI, EI	DT or IDMT	
	Customized	DT	
Is set point	0.05 to 24 In	Definite time	Inst; 0.05 s to 300 s
	0.05 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls
Timer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
Confirmation	None		
	By negative sequence overvoltage		
	By phase-to-phase undervoltage		
ANSI 50N/51N or 50G/51G - Ea	rth faultt		
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	IEC : SIT/A, LTI/B, VIT/B, ETT/C		
	IEEE : MI (D), VI (E), EI (F)	DT or IDMT	
	IAC : I, VI, EI	DT or IDMT	
	EPATR-B, EPATR-C	DT	0.5 to 1 s
	Customized	DT	0.1 to 3s
Is set point	0.5 to 24 In	Definite time	Inst; 0.05 s to 300 s
	0.5 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls0
Timer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT: reset time)		0.5 s to 20 s
ANSI 50V/51V or 50G/51G - Vo	Itage-restrained overcurrent		
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	RI	DT	
	IEC SIT/A I TI/B VIT/B EIT/C	DT or IDMT	
		DT or IDMT	
	IAC : I. VI. EI	DT or IDMT	
	Customized	DT	
Is set point	0.5 to 24 In	Definite time	Inst: 0.05 s to 300 s
	0.5 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls0
Timer hold	Definite time (DT: timer hold)		Inst: 0.05 s to 300 s
	IDMT (IDMT: reset time)		0.5 s to 20 s
ANSI 59 - Overvoltage (I -I) or	(I -N)		
Set point and time delay	50 to 150 % of Upp or Vpp		0.05 to 300 s
ANSI 59N - Neutral voltage dis	nlacement		
	Definite time		
Tripping curve			
Set point	2 to 80 % of Linn	Definite time	0.05 to 300 s
	2 to 10 % of Upp	IDMT	0.1 to 100 s
ANSI 64REF - Restricted earth	fault differential		
	$0.05 \text{ to } 0.8 \ln (\ln > 20.4)$		
	0.00.00000000000000000000000000000000		
Measurement origin	Channels (1.10)		
ANSI 66 - Starts per hour			
Total number of starts	1 to 60	Period	1 to 6 h
Number of consecutive starts	1 to 60	T time delay stop/start	0 to 90 mn
	1 10 00	i time delay stop/start	0.0.30 mm

(1) Tripping as of 1.2 ls.

Protection Setting ranges

Functions	Settings		Time
ANSI 67 - Directional phase overcurrent			
Characteristic angle	30°, 45°, 60°		
	Tripping time delay	Timer hold delay	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
	RI	DT	
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
	Customized	DT	
Is set point	0.1 to 24 In	Definite time	Inst; 0.05 s to 300 s
	0.1 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls0
Timer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
ANSI 67N/67NC - Directional earth fault, proje	ection (type 1)		
Characteristic angle	-45°, 0°, 15°, 30°, 45°, 60°, 90°		
Is0 set point	0.01 to 15 In0 (mini. 0,1 A)	Definite time	Inst; 0.05 s to 300 s
Vs0 set point	2 to 80 % of Unp		
Memory time	T0mem time	0; 0.05 s to 300 s	
	V0mem validity set point	0; 2 to 80 % of Unp	
Measurment origin	I0 input or sum of phase currents I0S		
ANSI 67N/67NC - Directional earth fault, acco	ording to IO vector magnitude (typ	e 2)	
Characteristic angle	-45°, 0°, 15°, 30°, 45°, 60°, 90°		
	Tripping time delay	Timer hold delay	
Tripping curve	Definite time	DT	
npping our ve	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
	RI	DT	
	IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
	Customized	DT	
Is0 set point	0.1 to 15 In0 (min. 0.1 A)	Definite time	Inst; 0.05 s to 300 s
	0.01 to 1 In0 (min. 0.1 A)	IDMT	0.1 s to 12.5 s at 10 ls0
Vs0 set point	2 to 80 % of Unp		
Timer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
Measurment origin	10 input		
ANSI 67N/67NC type 3 - Directional earth fau	It, according to I0 vector magnitu	de directionalized on a tripp	ing sector
Tripping sector start angle	0° to 359°		
Tripping sector end angle	0° to 359°		
Is0 set point CSH core balance CT (2 A rating)	0.1 A to 30 A	Definite time	Inst; 0.05 s to 300 s
1 A CT	0.005 to 15 In0 (min. 0.1 A)		
Core balance CT + ACE990 (range 1)	0.01 to 15 In0 (min. 0.1 A)		
Vs0 set point	Calculated V0 (sum of 3 voltages)	2 to 80 % of Unp	
	Measured V0 (external VT)	0.6 to 80 % of Unp	
Time between 2 power swings	1 to 300 s		
Measurment origin	I0 input		
ANSI 81H - Overfrequency			
Set point and time delay	50 to 55 Hz or 60 to 65 Hz		0.1 to 300 s
Setting range	Main channels (U)		
ANSI 81L - Underfrequency			
Set point and time delay	40 to 50 Hz or 50 to 60 Hz		0.1 to 300 s
Setting range	Main channels (U)		
ANSI 81R - Rate of change of frequency			
	0.1 to 10 Hz/s		0.15 to 300 s

Control and monitoring

Description

Sepam performs all the control and monitoring functions required for electrical network operation:

■ the main control and monitoring functions are predefined and fit the most frequent cases of use. They are ready to use and are implemented by simple parameter setting after the necessary logic inputs / outputs are assigned.

■ the predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options: □ logic equation editor, to adapt and complete the predefined control and monitoring functions

creation of personalized messages for local annunciation

□ creation of personalized mimic diagrams corresponding to the controlled devices □ customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages.

Operating principle

The processing of each control and monitoring function may be broken down into 3 phases:

- acquisition of input data:
- □ results of protection function processing

 \square external logic data, connected to the logic inputs of an optional MES120 input / output module

- □ local control orders transmitted by the mimic-based UMI
- □ remote control orders (TC) received via the Modbus communication link
- actual processing of the control and monitoring function
- utilization of the processing results:
- activation of outputs to control a device
- □ information sent to the facility manager:
- by message and/or LED on the Sepam display and SFT2841 software
- by remote indication (TS) via the Modbus communication link
- by real-time indications on device status on the animated mimic diagram.

Logic inputs and outputs

The number of Sepam inputs / outputs must be adapted to fit the control and monitoring functions used.

The 4 outputs included in the Sepam series 60 base unit may be extended by adding 1 or 2 MES120 modules with 14 logic inputs and 6 output relays.

After the number of MES120 modules required for the needs of an application is set, the logic inputs are assigned to functions. The functions are chosen from a list which covers the whole range of possible uses. The functions are adapted to meet needs within the limits of the logic inputs available. The inputs may also be inverted for undervoltage type operation.

A default input / output assignment is proposed for the most frequent uses.

Maximum Sepam series 60 configuration with 2 MES120 modules: 28 inputs and 16 outputs.

Logic inputs and outputs GOOSE

GOOSE logic inputs are used with the IEC61850 communication protocol. The GOOSE inputs are divided between the 2 GSE virtual modules with 16 logic inputs.

Each Sepam contains the appropriate predefined control and monitoring functions for the chosen application.

ANSI 94/69 - Circuit breaker/contactor control

Control of breaking devices equipped with different types of closing and tripping coils:

- circuit breakers with shunt or undervoltage trip coils
- Iatching contactors with shunt trip coils
- contactors with latched orders.

The function processes all breaking device closing and tripping conditions, based on:

- protection functions
- breaking device status data
- remote control orders

■ specific control functions for each application (e.g. recloser, synchro-check). The function also inhibits breaking device closing, according to the operating conditions.

Automatic transfer (AT)

This function transfers busbar supply from one source to another. It concerns substations with two incomers, with or without coupling.

The function carries out:

- automatic transfer with a break if there is a loss of voltage or a fault
 manual transfer and return to normal operation without a break, with or without
- synchro-check
- control of the coupling circuit breaker (optional)
- selection of the normal operating mode

■ the necessary logic to ensure that at the end of the sequence, only 1 circuit breaker out of 2 or 2 out of 3 are closed.

The function is distributed between the two Sepam units protecting the two incomers. The synchro-check function (ANSI 25) is carried out by the optional MCS025 module, in conjunction with one of the two Sepam units.

Load shedding - Automatic restart

Automatic load regulation on electrical networks by load shedding followed by automatic restarting of motors connected to the network

Load shedding

- The breaking device opens to stop motors in case of:
- detection of a network voltage sag by the positive sequence undervoltage
- protection function ANSI 27D
- receipt of a load shedding order on a logic input.

Automatic restart

The motors disconnected as a result of the network voltage sag are automatically restarted:

■ after the return of network voltage is detected by the positive sequence

undervoltage protection function ANSI 27D

■ and a time delay has run out, so as to stagger motor restarts.

De-excitation

Interruption of a synchronous generator's excitation supply and tripping of the generator breaking device in case of:

detection of an internal generator fault

- detection of an excitation system fault
- receipt of a de-excitation order on a logic input or via the communication link.

Automatic transfer with synchro-check controlled by Sepam series 60.

115

Genset shutdown

Shutdown of the driving machine, tripping of the breaking device and interruption of the generator excitation supply in case of:

detection of an internal generator fault

receipt of a genset shutdown order on a logic input or via the communication link.

ANSI 68 - Logic discrimination

This function provides:

■ perfect tripping discrimination with phase-to-phase and phase-to-earth shortcircuits, on all types of network

■ faster tripping of the breakers closest to the source (solving the drawback of conventional time discrimination).

Each Sepam is capable of:

■ sending a blocking input when a fault is detected by the phase overcurrent and earth fault protection functions, which may or may not be directional (ANSI 50/51, 50N/51N, 67 or 67N/67NC)

and receiving blocking inputs which inhibit protection tripping. A saving mechanism ensures continued operation of the protection in the event of a blocking link failure.

ANSI 86 - Latching / acknowledgement

The tripping outputs for all the protection functions and all the logic inputs lx can be latched individually. The latched information is saved in the event of an auxiliary power failure.

(The logic outputs cannot be latched.)

All the latched data may be acknowledged:

- locally, with the key
- remotely via a logic input
- or via the communication link.

The Latching/acknowledgement function, when combined with the circuit breaker/ contactor control function, can be used to create the ANSI 86 "Lockout relay" function.

Output relay testing

Each output relay is activated for 5 seconds, to make it simpler to check output connections and connected switchgear operation.

Local indications on the Sepam front panel.

Alarm mes	ssage hi	story							
EDe	1051	b>51	los 51N	la>>51N	Ext	1	0 at	Ion	Trip
0	0	0	0	0	0	0	0	0	0
Failt	11	12	13	LA	1.5	LS	17	LB	1.9
Date	Te		Unit		Group		Message	Info	mation
29/10/10	01	2210.063	Unit 1				UNDERVOLT	AGE	
29/10/10	09	2210.063	Unit 2				UNDERVOL	AGE	
29/10/10	09	21:00.864	Unit 2				UNDERVOLT	AGE	
29/10/10	(0)	21:00.738	Unit 1				UNDERVOLT	AGE	
21/10/10	18	5011.144					TRIP CIRCU	IT	

SFT2841: alarm history.

ANSI 30 - Local annunciation

LED indication

■ 2 LEDs, on the front and back of Sepam, indicate the unit operating status, and are visible when a Sepam without a UMI is mounted inside the LV compartment, with access to connectors:

green LED ON: Sepam on

□ red "key" LED: Sepam unavailable (initialization phase or detection of an internal failure)

- 9 yellow LEDs on the Sepam front panel:
- □ pre-assigned and identified by standard removable labels

□ the SFT2841 software tool may be used to assign LEDs and personalize labels.

Local annunciation on Sepam display

Events and alarms may be indicated locally on Sepam's advanced UMI or on the mimic-based UMI by:

- messages on the display unit, available in 2 languages:
- □ English, factory-set messages, not modifiable

□ local language, according to the version delivered (the language version is chosen when Sepam is set up)

■ the lighting up of one of the 9 LEDs, according to the LED assignment, which is set using SFT2841.

Alarm processing

■ when an alarm appears, the related message replaces the current display and the related LED goes on.

The number and type of messages depend on the type of Sepam. The messages are linked to Sepam functions and may be viewed on the front-panel display and in the SFT2841 "Alarms" screen.

■ to clear the message from the display, press the key

■ after the fault has disappeared, press the key 🚔: the light goes off and Sepam is reset

■ the list of alarm messages remains accessible ((key) and may be cleared by pressing the xey from 'Alarm' screen, but can not be cleared from "Alarm history" screen.

Local control using the mimic-based UMI.

Local control using the mimic-based UMI

Sepam control mode

- A key-switch on the mimic-based UMI is used to select the Sepam control mode. Three modes are available : Remote. Local or Test.
- In Remote mode:
- remote control orders are taken into account
- local control orders are disabled, with the exception of the circuit-breaker open order.
- In Local mode:
- remote control orders are disabled, with the exception of the circuit-breaker open order
- Iocal control orders are enabled.
- Test mode should be selected for tests on equipment, e.g. during preventivemaintenance operations:
- all functions enabled in Local mode are available in Test mode
- no remote indications (TS) are sent via the communication link.

View device status on the animated mimic diagram

For safe local control of devices, all information required by operators can be displayed simultaneously on the mimic-based UMI:

■ single-line diagram of the equipment controlled by Sepam, with an animated, graphic indication of device status in real time

the desired current, voltage and power measurements.

The local-control mimic diagram can be customized by adapting one of the supplied, predefined diagrams or by creating a diagram from scratch.

Local control of devices

All the devices for which opening and closing are controlled by Sepam can be controlled locally using the mimic-based UMI.

The most common interlock conditions can be defined be logic equations.

The sure and simple operating procedure is the following:

select the device to be controlled by moving the selection window using the keys
 or
 Sepam checks whether local control of the selected device is authorized

and informs the operator (selection window with a solid line) selection confirmation for the device to be controlled by pressing the key d (the

selection window flashes)

device control by pressing:

□ key [●]: open order □ or key □: close order.

Functions Sepam series 60

Control and monitoring Adaptation of predefined functions using the SFT2841 software

The predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options: logic equation editor, to adapt and complete the predefined control and monitoring

- functions
- creation of personalized messages for local annunciation
- creation of custom mimic diagrams corresponding to the controlled devices

■ customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages.

Operating principle

SFT2841: logic equation editor.

Logic equation editor

The logic equation editor included in the SFT2841 software can be used to:

- complete protection function processing:
- □ additional interlocking
- □ conditional inhibition/validation of functions
- □ etc.

■ adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

A logic equation is created by grouping logic input data received from:

- protection functions
- . ■ logic inputs
- Iocal control orders transmitted by the mimic-based UMI

remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message via the control matrix
- transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit breaking device closing
- used to inhibit or reset a protection function.

119

Control and monitoring Adaptation of predefined functions using the SFT2841 software

Personalized alarm and operating messages

The alarm and operating messages may be personalized using the SFT2841 software tool.

The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

on the Sepam display

■ in the SFT2841 "Alarms" and "Alarm History" screens.

Local-control mimic diagram

The mimic-diagram editor in the SFT2841 software can be used to create a single-line diagram corresponding exactly to the equipment controlled by Sepam. Two procedures are available:

rework a diagram taken from the library of standard diagrams in the SFT2841 software

■ creation of an original diagram : graphic creation of the single-line diagram, positioning of symbols for the animated devices, insertion of measurements, text, etc.

Creation of a customized mimic diagram is made easy:

- library of predefined symbols: circuit breakers, earthing switch, etc.
- creation of personalized symbols.

The control matrix is a simple way to assign data from:

protection functions

- control and monitoring functions
- Iogic inputs
- Iogic equations
- to the following output data:
- output relays
- 9 LEDs on the front panel of Sepam
- messages for local annunciation
- triggering of disturbance recording.

SFT2841: mimic-diagram editor.

SFT2841: control matrix.

Base unit Presentation

Base units are defined according to the following characteristics:

- type of User-Machine Interface (UMI)
- working language
- type of base unit connector
- type of current sensor connector
- type of voltage sensor connector.

Sepam series 60 base unit with integrated advanced UMI.

Sepam series 60 base unit with mimic-based UMI.

Customized Chinese advanced UMI

User-Machine Interface

Two types of User-Machine Interfaces (UMI) are available for Sepam series 60 base units:

- mimic-based UMI
- advanced UMI.

The advanced UMI can be integrated in the base unit or installed remotely on the cubicle. Integrated and remote advanced UMIs offer the same functions.

- A Sepam series 60 with a remote advanced UMI is made up of:
- a bare base unit without any UMI, for mounting inside the LV compartment
- a remote advanced UMI (DSM303) □ for flush mounting on the front panel of the cubicle in the location most suitable for

the facility manager

□ for connection to the Sepam base unit using a prefabricated CCA77x cord. The characteristics of the remote advanced UMI module (DSM303) are presented on page 218.

Comprehensive data for facility managers

All the data required for local equipment operation may be displayed on demand: display of all measurement and diagnosis data in numerical format with units and/ or in bar graphs

- display of operating and alarm messages, with alarm acknowledgment and Sepam resetting
- display of the list of activated protection functions and the main settings of major protection functions

adaptation of activated protection function set points or time delays in response to new operating constraints

- display of Sepam and remote module versions
- output testing and logic input status display
- entry of 2 passwords to protect parameter and protection settings.

Local control of devices using the mimic-based UMI

The mimic-based UMI provides the same functions as the advanced UMI as well as local control of devices:

- selection of the Sepam control mode
- view device status on the animated mimic diagram
- local opening and closing of all the devices controlled by Sepam.

Ergonomic data presentation

- keypad keys identified by pictograms for intuitive navigation
- menu-guided access to data
- graphical LCD screen to display any character or symbol

excellent display quality under all lighting conditions: automatic contrast adjusted and backlit screen (user activated).

Working language

All the texts and messages displayed on the advanced UMI or on the mimic-based UMI are available in 2 languages:

- English, the default working language
- and a second language, which may be
- French
- Spanish
- □ another "local" language.

Please contact us regarding local language customization.

Connection of Sepam to the parameter setting tool

The SFT2841 parameter setting tool is required for Sepam protection and parameter setting.

A PC containing the SFT2841 software is connected to the RS 232 communication port on the front of the unit or trough the communication network.

121

Base unit

Presentation

Selection guide						
Base unit	With remote advanced UMI	With integrated advanced UMI	With mimic-based UMI			
Functions						
Local indication						
Metering and diagnosis data						
Alarms and operating messages	•	•	•			
List of activated protection functions	•	•				
Main protection settings	•	•				
Version of Sepam and remote modules	•	•	•			
Status of logic inputs						
Switchgear status on the animated mimic diagram			•			
Phasor diagram of currents or voltages			•			
Local control						
Alarm acknowledgement	•	•				
Sepam reset	•	•				
Output testing	•	•				
Selection of Sepam control mode						
Characteristics			•			
Screen						
Size	128 x 64 pixels	128 x 64 pixels	128 x 240 pixels			
Automatic contrast setting	•	•				
Backlitscreen	•	•	•			
Keypad						
Number of keys	9	9	14			
Control-mode switch			Remote / Local / Test			
LEDs						
Sepam operating status	 base unit: 2 LEDs visible on back remote advanced UMI: 2 LEDs visible on front 	2 LEDs, visible from front and back	2 LEDs, visible from front and back			
Indication LEDs	9 LEDs on remote advanced UMI	9 LEDs on front	9 LEDs on front			
Mounting						
-	bare base unit, mounted at the back of the compartment using	Flush mounted on front of cubicle	Flush mounted on front of cubicle			

 back of the compartment using the AMT880 mounting plate
 DSM303 remote advanced
 UMI module , flush mounted on the front of the cubicle and connected to the base unit with the CCA77x prefabricated cord

Base unit Presentation

Sepam series 60 memory cartridge and backup battery.

Hardware characteristics

Removable memory cartridge

- The cartridge contains all the Sepam characteristics:
- all Sepam protection and parameter settings
- all the metering and protection functions required for the application
- predefined control functions
- functions customized by control matrix or logic equations
- personalized local-control mimic diagram
- accumulated energies and switchgear diagnosis values
- working languages, customized and otherwise.
- It may be made tamper-proof by lead sealing.
- It is removable and easy to access on the front panel of Sepam to reduce maintenance time.
- If a base unit fails, simply:
- switch off Sepam and unplug connectors
- retrieve original cartridge
- replace the faulty base unit by a spare base unit (without cartridge)
- load the original cartridge into the new base unit
- plug in the connectors and switch Sepam on again:

Sepam is operational, with all its standard and customized functions, without requiring any reloading of protection and parameter settings.

Backup battery

Standard lithium battery, 1/2 AA format, 3.6 Volts.

It allows the following data to be stored in the event of an auxiliary power outage: time-tagged event tables

- disturbance recording data
- peak demands, tripping context, etc
- date and time.

The battery presence and charge are monitored by Sepam.

The main data (e.g. protection and parameter settings) are saved in the event of an auxiliary power outage, regardless of the state of the battery.

Auxiliary power supply

DC power supply voltage from 24 to 250 V DC.

Four relay outputs

The 4 relay outputs O1, O2, O3 and O5 on the base unit must be connected to connector (A). Each output can be assigned to a predetermined function using the SFT2841 software.

O1 to O3 are 3 control outputs with one NO contact, used by default for the switchgear control function:

- O1: switchgear tripping
- O2: switchgear closing inhibition
- O3: switchgear closing

O5 is an indication output used by default for the watchdog function and has two contacts, one NC and one NO.

Base unit Presentation

Main connector and voltage and residual current input

- connector
- A choice of 2 types of removable, screw-lockable 20-pin connectors:
- CCA620 screw-type connectors
- or CCA622 ring lug connectors.
- The presence of the connector is monitored.

Phase current input connectors

Current sensors connected to removable, screw-lockable connectors according to type of sensors used:

- CCA630 or CCA634 connector for 1 A or 5 A current transformers
- or CCA671 connector for LPCT sensors.
- The presence of these connectors is monitored.

Mounting accessories

Spring clips

8 spring clips are supplied with the base unit to flush-mount Sepam in mounting plates 1.5 to 6 mm thick. Simple, tool-free installation.

AMT880 mounting plate

It is used to mount a Sepam without UMI inside the compartment with access to connectors on the rear panel.

Mounting used with remote advanced UMI module (DSM303).

AMT820 blanking plate

It fills in the space left when a standard model Sepam 2000 is replaced by a Sepam series 60.

Spare base units

- The following spares are available to replace faulty base units:
- base units with or without UMI, without cartridge or connectors
- all types of standard cartridges.

AMT852 lead sealing accessory

The AMT852 lead sealing accessory can be used to prevent unauthorized modification of the settings of Sepam series 60 units with integrated advanced UMIs.

- The accessory includes:
- a lead-sealable cover plate

■ the screws required to secure the cover plate to the integrated advanced UMI of the Sepam unit.

Note: the AMT852 lead sealing accessory can secured only to the integrated advanced UMIs of Sepam series 60 units.

Base unit Description

- 1 Green LED: Sepam on.
- 2 Red LED: Sepam unavailable.
- 3 9 yellow indication LEDs.
- 4 Label identifying the indication LEDs.
- 5 Graphical LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- 10 Acknowledgement and clearing of alarms (or move cursor up).
- 11 LED test (or move cursor down).
- 12 Display and adaptation of activated protection settings.
- 13 Display of Sepam.
- 14 Entry of 2 passwords.
- 15 RS 232 PC connection port.
- 16 Backup battery.
- 17 Memory cartridge.
- 18 Door.

Front panel with advanced UMI |2 4 DE88156 5 6 (*1*,...) 11 = 165A RMS 7 (X, 2 = 166A RMS \oslash I3 = 167А кмs 8 • reset Ø 18 15 14 13 12 11 10 9 17 16

Front panel with mimic-based UMI

E60677 • 2 Sepam G62 Local G \oslash 11 = 175 A U21= 6.61 kV 1 81 MW O = 860 kyaØ K 15 19 17 21 25 24 23 22 20 18 16 14 13

- 1 Graphical LCD screen.
- 2 Green LED: Sepam on.
- 3 Red LED: Sepam unavailable.
- 4 Local close order.
- 5 Local open order.
- 6 Label identifying the indication LEDs.
- 7 7 yellow indication LEDs, 1 red LED (I), 1 green LED (o).
- 8 Move cursor up.
- 9 Confirm data entry.
- 10 Move cursor down.
- 11 RS 232 PC connection port.
- 12 Transparent door.
- 13 Entry of 2 passwords.
- 14 Mimic-based UMI display.
- 15 Sepam reset.
- 16 Display of alarm messages.
- 17 Acknowledgement and clearing of alarms.
- 18 Display of switchgear and network diagnosis data (or LED test).
- 19 Display and adaptation of activated protection settings.
- 20 Display of measurements.
- 21 Display of Sepam.
- 22 Three-position key switch to select Sepam control mode.
- 23 Backup battery.
- 24 Memory cartridge.
- 25 Door.

2

. 3

.4

5

6

.7

8

9

10

.11

12

125

Base unit Description

≟ Functional earth.

Base unit Technical characteristics

Weight							
		Base unit with a	ivanced LIMI	Base unit with	mimic-based LIMI		
Minimum weight (base unit witho	Nut MES120)	2.4 kg (5.20 lb)		3.0 kg (6.61 lb)			
Maximum weight (base unit with	2 MES120)	3.4 kg (7.5 lb)		4 0 kg (0.01 lb)			
Sensor inputs	2 MEO 120)	5.4 kg (7.51b)		4.0 kg (0.02 lb)			
Phase current inputs		1 A or 5 A CT					
		< 0.02.0					
Consumption		< 0.02 VA (1 A CT)					
		< 0.5 VA (5 A CT)					
Continuous thermal withstand		4 In					
1 second overload		100 In					
Voltage inputs		Phase		Residual			
Input impedance		> 100 k Ω		> 100 k Ω			
Consommation		< 0.015 VA (100 V V	T)	< 0.015 VA (100 V	/ VT)		
Continuous thermal withstand		240 V		240 V			
1-second overload		480 V		480 V			
other isolated groups		Ennanced		Ennanced			
Relay outputs							
Control relay outputs (O1	, O2, O3; and O101, O102)						
Voltage	DC	24/48 V DC	127 V DC	220 V DC			
	AC (47.5 to 63 Hz)				100 to 240 V AC		
Continuous current		8 A	8 A	8 A	8 A		
Breaking capacity	Resistive load	8A/4A	0.7 A	0.3 A			
	Load L/R < 20 ms	6A/2A	0.5 A	0.2 A			
	Load L/R < 40 ms	4A/1A	0.2 A	0.1 A			
	Resistive load				8 A		
	Load p.f. > 0.3	15 1 6 000			5 A		
Making capacity		< 15 A for 200 ms					
other isolated groups		Ennanced					
Annunciation relay output	t (05, 0102 to 0106, 0202	to O206)					
Voltage	DC.	24/48 V DC	127 V DC	220 V DC			
, onago	AC (47.5 to 63 Hz)		121 000	220 4 00	100 to 240 V AC		
Continuous current		2 A	2 A	2 A	2A		
Breaking capacity	Load L/R < 20 ms	2A/1A	0.5 A	0.15 A			
J J	Load p.f. > 0.3				1A		
Isolation of outputs in relation to other isolated groups		Enhanced					
Power supply							
Voltage		24 to 250 V DC	-20 % /	+10 %			
Maximum consumption		< 16 W					
Inrush current		< 10 A 10 ms					
Acceptable ripple content		12 %					
Acceptable momentary outages		20 ms					
Battery							
Format		1/2 AA lithium 3.6 V					
Service life		10 years Sepam ene	ergized				
		2 vooro minimum tu	nigally 6 years Sapar	a not an orgizod			

3 years minimum, typically 6 years Sepam not energie (1) Relay outputs complying with clause 6.7 of standard C 97.90 (30 A, 200 ms, 2000 operations)

Base unit Environmental characteristics

Electromagnetic compatibility	Standard	Level / Class	Value
Emission tests			
Disturbing field emission	IEC 60255-25		
	EN 55022	A	
Conducted disturbance emission	IEC 60255-25	Δ	
Immunity tests – Radiated disturbances	EN 33022	A	
Immunity to radiated fields	IEC 60255-22-3		10 V/m ⁻ 80 MHz - 1 GHz
	IEC 61000-4-3		10 V/m; 80 MHz - 2 GHz
	ANSI C37.90.2 (2004)		20 V/m; 80 MHz - 1 GHz
Electrostatic discharge	IEC 60255-22-2		8 kV air; 6 kV contact
	ANSI C37.90.3		8 kV air; 4 kV contact
Immunity to magnetic fields at network frequency	IEC 61000-4-8	4	30 A/m (continuous) - 300 A/m (1-3 s) ⁽⁴⁾
Immunity tests – Conducted disturbances			40.1/
Immunity to conducted RF disturbances	IEC 60255-22-0	A and P	10 V 4 kV/: 2 5 kHz / 2 kV/: 5 kHz
	IEC 60233-22-4	IV	4 kV: 2 5 kHz
	ANSI C37.90.1		4 kV; 2.5 kHz
1 MHz damped oscillating wave	IEC 60255-22-1		2.5 kV CM; 1 kV DM
	ANSI C37.90.1		2.5 kV CM; 2.5 kV DM
100 kHz damped sine wave	IEC 61000-4-12		2 kV CM
Slow damped oscillating wave (100 kHz to 1 MHz)	IEC 61000-4-18		2 kV CM
Fast damped oscillating wave (3 MHz, 10 MHz, 30 MHz)	IEC 61000-4-18		
Impulse wave	IEC 61000-4-5		
0 Hz to 150 kHz	120 01000-4-10		
Voltage interruptions	IEC 60255-11		100 % during 20 ms
Mechanical robustness	Standard	Level / Class	Value
In operation			
Vibrations	IEC 60255-21-1	2	1 Gn; 10 Hz - 150 Hz
	IEC 60068-2-6	Fc	3 Hz - 13.2 Hz; a = ±1 mm
	IEC 60068-2-64	2M1	
Shocks	IEC 60255-21-2	2	10 Gn / 11 ms
Earthquakes	IEC 60255-21-3	2	2 Gn (horizontal axes)
De energiand			1 Gn (vertical axes)
Vibratiana		0	2.00:1011- 15011-
Shocks	IEC 60255-21-1	2	2 GR; 10 HZ - 150 HZ
Inits	IEC 60255-21-2	2	20 Gn / 16 ms
Climatic withstand	Standard		Value
	Otanuaru	Lever/Old55	Value
Exposure to cold	IEC 60068-2-1	Ad	-25 °C
Exposure to dry heat	IEC 60068-2-2	Bd	+70 °C
Continuous exposure to damp heat	IEC 60068-2-78	Cab	10 days; 93 % RH ; 40 °C
Salt mist	IEC 60068-2-52	Kb/2	6 days
Influence of corrosion/Gas test 2	IEC 60068-2-60	С	21 Days, 75% RH, 25°C, 500.10-9 vol/
			vol H ₂ S; 1000.10-9 vol/vol SO ²
Influence of corrosion/Gas test 4	IEC 60068-2-60	Method 3	21 Days, 75% RH, 25°C,
			$10+/-5 H^2S; 200+/-20 SO^2; 200+/-20 NO^2 10+/-20 NO^2 10+/-5 Cl^2 (10.0 vol(vol))$
	FIA 364-65A	1110	42 days 75% PH 30°C
	EIA 304-03A	IIIA	100+/-20 H ² S: 200+/-50 SO ² : 200+/-50
			NO ² , 20+/-5 Cl ² (10-9 vol/vol)
In storage ⁽³⁾			
Temperature variation with specified variation rate	IEC 60068-2-14	Nb	-25 °C at +70 °C; 5 °C/min
Exposure to cold	IEC 60068-2-1	Ab	-25 °C
Exposure to dry heat	IEC 60068-2-2	Bb	+70 °C
Continuous exposure to damp heat	IEC 60068-2-78	Cab	56 days; 93 % RH; 40 °C
	IEC 60068-2-30	Db	6 days; 95 % RH; 55 °C
Safety	Standard	Level / Class	Value
Enclosure safety tests			
Front panel tightness	IEC 60529	IP52	Other panels IP20
The with stead		Type 12	050 °Q with allowing
Fire withstand	IEC 60695-2-11		650 °C with glow wire
1 2/50 us impulse wave	IEC 60255 5		5 k)/(1)
Power frequency dielectric withstand	IEC 60255-5		$\frac{5 \text{ kV}^{(2)}}{2 \text{ kV} (1 \text{ mn}^2)}$
Tower nequency dielectric withstand	ANSI C37 90		1 kV 1 mn (indication output)
			1.5 kV 1 mn (control output)
Certification			
CE	EN 50263 harmonized	European Electroma	gnetic Compatibility Directive (EMCD)
	standard	2004 / 108 / EC of 15 D	ecember 2004
		of 12 December 2006	ye Directive (LVD) 2000/93/CE
		05	File E212533
UL	UL508 - CSA C22.2 n° 14-	-90	
	UL508 - CSA C22.2 n° 14- CSA C22 2 n° 14-05 / n° 0	-95 94-M91 / n° 0 17-00	File 210625
UL RAUS CSA (1) Except for communication: 3 kV in common mode and 1 kV ii	UL508 - CSA C22.2 n° 14- CSA C22.2 n° 14-95 / n° 9 n differential mode.	94-M91 / n° 0.17-00	File 210625
UL BNUS CSA (1) Except for communication: 3 kV in common mode and 1 kV ii (2) Except for communication: 1 kVrms.	UL508 - CSA C22.2 n° 14- CSA C22.2 n° 14-95 / n° 9 n differential mode.	94-M91 / n° 0.17-00	File 210625

128 Schneider

Base unit

Front view of Sepam.

Dimensions

Side view of Sepam with MES120, flush-mounted in front panel with spring clips. Front panel: 1.5 mm (0.05 ln) to 6 mm (0.23 ln) thick.

Clearance for Sepam assembly and wiring.

A CAUTION HAZARD OF CUTS

Trim the edges of the cut-out plates to remove any jagged edges. Failure to follow this instruction can cause

serious injury.

AMT880 mounting plate.

Top view of Sepam with MES120, flush-mounted in front panel with spring clips. Front panel: 1.5 mm (0.05 ln) to 6 mm (0.23 ln) thick.

Assembly with AMT880 mounting plate

Top view of Sepam with MES120, mounted with AMT880 and spring clips. Mounting plate: 3 mm (0.11 ln) thick. Connection diagrams Sepam series 60

Base unit Sepam series 60

Base unit Connection

Connector	Туре	Reference	Wiring
(A), (E)	Screw type	CCA620	 wiring with no fittings : 1 wire with max. cross-section 0.2 to 2.5 mm² (≥AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire (AWG 16) DZ5CE025D for 1 x 2.5 mm² wire (AWG 12) AZ5DE010D for 2 x 1 mm² wires (AWG 18) tube length: 8.2 mm (0.32 in) stripped length: 8 mm (0.31 in)
	6.35 mm ring lugs	CCA622	 ■ 6.35 mm ring or spade lugs (1/4") ■ maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) ■ stripped length: 6 mm ■ use an appropriate tool to crimp the lugs on the wires ■ maximum of 2 ring or spade lugs per terminal ■ tightening torque: 1.2 (13.27 lb-in)
<u>C1</u>	White RJ45 plug		CCA612
D1)	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13.1 ft) CCA785 for MCS025 module: L = 2 m (6.6 ft)
F	Blue RJ45 plug		CCA614
Functional earth	Ring lug		Earthing braid, to be connected to cubicle grounding: ■ flat copper braid with cross-section ≥ 9 mm ² ■ maximum length: 300 mm (11.8 in)
(B1)	4 mm ring lugs	CCA630, CCA634 for connection of 1 A or 5 A CTs	 wire cross-section 1.5 to 6 mm² (AWG 16-10) tightening torque: 1.2 Nm (13.27 lb-in)
	RJ45 plug	CCA671, for connection of 3 LPCT sensors	Integrated with LPCT sensor

CAUTION

LOSS OF PROTECTION OR RISK OF NUISANCE TRIPPING

If the Sepam is no longer supplied with power or is in fail-safe position, the protection functions are no longer active and all the Sepam output relays are dropped out. Check that this operating mode and the watchdog relay wiring are compatible with your installation.

Failure to follow this instruction can result in equipment damage and unwanted shutdown of the electrical installation.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

• Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.

NEVER work alone.

Turn off all power supplying this equipment before working on or inside it.

- Consider all sources of power, including the possibility of backfeeding. Always use a properly rated voltage sensing device to confirm that all power is off
- is off.

■ Start by connecting the device to the protective earth and to the functional earth.

Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

131

Base unit Phase current inputs

Variant 1: phase current measurement by 3 x 1 A or 5 A CTs (standard connection)

Connection of 3 x 1 A or 5 A sensors to the CCA630 connector.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

Farameters		
Sensor type	5 A CT or 1 A CT	
Number of CTs	11, 12, 13	
Rated current (In)	1 A to 6250 A	

Variant 2: phase current measurement by 2 x 1 A or 5 A CTs

Connection of 2 x 1 A or 5 A sensors to the CCA630 connector.

Measurement of phase 1 and 3 currents is sufficient for all protection functions based on phase current.

Parameters

i urumetero		
Sensor type	5 A CT or 1 A CT	
Number of CTs	11, 13	
Rated current (In)	1 A to 6250 A	

Variant 3: phase current measurement by 3 LPCT type sensors

Connection of 3 Low Power Current Transducer (LPCT) type sensors to the CCA671 connector. It is necessary to connect 3 sensors; if only one or two sensors are connected, Sepam goes into fail-safe position.

Measurement of the 3 phase currents allows the calculation of residual current.

The In parameter, primary rated current measured by an LPCT, is to be chosen from the following values, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Parameter to be set using the SFT2841 software tool, to be completed by hardware setting of the microswitches on the CCA671 connector.

Parameters

Sensor type	LPCT
Number of CTs	11, 12, 13
Rated current (In)	25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000 or 3150 A

Note: Parameter In must be set twice:

Software parameter setting using the advanced UMI or the SFT2841 software tool

Hardware parameter setting using microswitches on the CCA671 connector

Base unit Residual current inputs

Variant 1: residual current calculation by sum of 3 phase currents Description 12 L3 CCA630/ Residual current is calculated by the vector sum of the 3 phase currents I1, I2 and I3, CCA634 measured by 3 x 1 A or 5 A CTs or by 3 LPCT type sensors. (B1) See current input connection diagrams. Parameters **Residual current** rated residual current Measuring range Sum of 3 Is In0 = In, CT primary current 0.01 to 40 In0 (minimum 0.1 A) Variant 2: residual current measurement by CSH120 or CSH200 core balance CT (standard connection) Description L2 L3 Arrangement recommended for the protection of isolated or compensated neutral Ē systems, in which very low fault currents need to be detected.

Paramotors

rated residual current	Measuring range
In0 = 2 A	0.1 to 40 A
In0 = 20 A	0.2 to 400 A
	rated residual current In0 = 2 A In0 = 20 A

Variant 3: residual current measurement by 1 A or 5 A CTs and CCA634

Residual current measurment by 1 A or 5 A CTs

- Terminal 7: 1 A CT
- Terminal 8: 5 A CT

Parameters

Residual current	rated residual current	Measuring range				
1 A CT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)				
5ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)				

Base unit Residual current inputs

Variant 4: residual current measurement by 1 A or 5 A CTs and CSH30 interposing ring CT

Description

The CSH30 interposing ring CT is used to connect 1 A or 5 A CTs to Sepam to measure residual current:

 CSH30 interposing ring CT connected to 1 A CT: make 2 turns through CSH primary

■ CSH30 interposing ring CT connected to 5 A CT: make 4 turns through CSH primary.

Parameters

Residual current	rated residual current	Measuring range				
1 A CT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)				
5ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)				

Variant 5: residual current measurement by core balance CT with ratio of 1/n (n between 50 and 1500)

Description

The ACE990 is used as an interface between a MV core balance CT with a ratio of 1/n (50 $\leq n \leq$ 1500) and the Sepam residual current input. This arrangement allows the continued use of existing core balance CTs on the installation.

Parameters

Residual current	rated residual current	Measuring range
ACE990 - range 1 (0.00578 ≤ k ≤ 0.04)	In0 = Ik.n (1)	0.01 to 20 In0 (minimum 0.1 A)
ACE990 - range 2 (0.00578 ≤ k ≤ 0.26316)	In0 = Ik.n (1)	0.01 to 20 In0 (minimum 0.1 A)

(1) n = number of core balance CT turns

k = factor to be determined according to ACE990 wiring and setting range used by Sepam

Connection diagrams Sepam series 60

Phase voltage inputs

Residual voltage input Main channels

Variant 1: measurement of 3 phase-to-neutral voltages (3 V, standard connection)

Phase voltage input connection variants

Measurement of the 3 phase-to-neutral voltages allows the calculation of residual voltage, $V0\Sigma$.

This variant does not allow the calculation of residual voltage.

Variant 4: measurement of 1 phase-to-neutral voltage (1 V)

This variant does not allow the calculation of residual voltage, but V0 or Vnt

measurment could be added as variant 5 or 6.

This variant does not allow the calculation of residual voltage.

Connection diagrams Sepam series 60

Phase voltage inputs

Residual voltage input Main channels

Variant 5: measurement of residual voltage V0 L1 629093 L3 E 2 <<u>v</u>296 <<u>v</u>390

Residual voltage input connection variants Variant 6 : measurement of the residual voltage Vnt at the neutral point of a generator

Phase voltage inputs Residual voltage input

Available functions

The availability of certain protection and metering functions depend on the phase and residual voltages measured by Sepam.

The table below gives the voltage input connection variants for which for each protection and metering function dependent on measured voltages is available. Example:

The directional overcurrent protection function (ANSI 67N/67NC) uses residual voltage V0 as a polarization value.

It is therefore operational in the following cases:

measurement of the 3 phase-to-neutral voltages or calculation of V0Σ

measurement of residual voltage V0 (variant 3,5).

The protection and metering functions which do not appear in the table below are available regardless of the voltages measured.

Phase voltages measured			3 V	2 U			1 <u>U</u>			1 V		
(connection variant)			(var. 1)		(var <u>. 2</u>	2)		(var. 3	3)	(var. 4)		
Residual voltage measured		-	V0 Sum	-	V0	Vnt	-	V0	Vnt	-	V0	Vnt
(connection variant)					(v. 5)	(v. 6)		(v. 5)	(v. 6)		(v. 5)	(v. 6)
Protection functions dependent on voltage	es measured											
Directional phase overcurrent	67					-						
Directional earth fault	67N/67NC	•	•									
Directional active overpower	32P		•			•						
Directional reactive active overpower	32Q		•			•						
Directional active underpower	37P		=			•						
Field loss (underimpedance)	40					-						
Voltage-restrained overcurrent	50V/51V											
Underimpedance	21B											
Positive sequence undervoltage	27D											
Remanent undervoltage	27R			•						•		
Undervoltage (L-L or L-N)	27											
Overvoltage (L-L or L-N)	59		•							•		
Neutral voltage displacement	59N		•		•	•						
Negative sequence overvoltage	47		•			•						
Overfrequency	81H		-			•						
Underfrequency	81L				•	•						
Rate of change of frequency	81R		•									
Measurements dependent on voltages mea	asured	1										
Phase-to-phase voltage U21, U32, U13		•	-	•		•	U21,	U21	U21			
Phase-to-neutral voltage V1, V2, V3		•	•							V1	V1	V1
Residual voltage V0		•			•			•				
Neutral point voltage Vnt						•						
Positive sequence voltage Vd			-									
negative sequence voltage Vi												
Frequency		•	•	•		•	•			•		
Active / reactive / apparent power: P, Q, S			•			•	•					
Peak demand power PM, QM			•									
Active / reactive / apparent power per phase : P1/P2/P3, Q1/Q2/Q3, S1/S2/S3		(1)) (1)		(1)					P1/ Q1/S1	P1/ Q1/S1	P1/ Q1/S1
Power factor			•									
Calculated active and reactive energy (±Wh, ±V	/ARh)			•								
Total harmonic distortion, voltage Uthd			•									
Phase displacement φ0												
Phase displacement φ1, φ2, φ3			•									
Apparent positive sequence impedance Zd			•									
Apparent phase-to-phase impedances Z21, Z3	2, Z13								1			

Function available on main voltage channels.

(1) If all three phase currents are measured.

schneider-electric.com

Training

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

selection guides from the e-catalog.
product discovery sites and

their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... Training allows you to acquire the Schneider Electric expertise (installation design, work with power on, etc.) for increased efficiency and a guarantee of improved customer service.

The training catalogue includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, design of LV installations.

An Owner of a	CAR BOARD	7.63.22	COLUMN TWO IS NOT	Contraction of the local division of the loc
	Anna Marian Anna Anna Anna		Hang Banny Hill Family Here and Annual Annual Annual Here and Annual Annual Here and Annual Annual Here and Annual Annual Here and Annual	

Sepam series 80

Range description Sepam series 20 and Sepam series 40	5 51
Separtisenes 60	69
Sepam series 80	139
Selection table	140
Functions Sepam series 80	142
Sensor inputs	142
General settings	143
Metering and diagnosis	144
Description	144
Characteristics	149
Protection	151
Description	151
Tripping curves	157
Main characteristics	159
Setting ranges	160
Control and monitoring	165
Description	165
Description of predefined functions	166
${\sf Adaptation} of {\sf predefined} {\sf functions} {\sf using} {\sf the} {\sf SFT2841} {\sf software}$	170
Customized functions using Logipam	172
Characteristics	173
Base unit	173
Presentation	173
Description	177
Technical characteristics	179
Environmental characteristics	180
Dimensions	182
Connection diagrams	184
Base unit	184
Connection	184
Sepam B83	185
Sepam C86	186
Phase current inputs	187
Residual current inputs	188
Phase voltage inputs	190
Main channels	190
Additional channels for Sepam B83	191
Additional channel for Sepam B80	192
Available functions	193
Additional modules and accessories	195
Order form	275

139

Selection table

		Quilta	4 - 41			T						0			Develo		0
		Subs	statior	1		Iran	sform	er	Moto	r		Gene	rator		Busb	ar	Cap.
Protection	ANSI code	S80	S81	S82	S84	T81	T82	T87	M81	M87	M88	G82	G87	G88	B80	B83	C86
Phase overcurrent ⁽¹⁾	50/51	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Breaker failure	50BF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Negative sequence / unbalance	46	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Thermal overload for cables	49RMS		1	1	1												
Thermal overload for machines ⁽¹⁾	49RMS					2	2	2	2	2	2	2	2	2			
Thermal overload for capacitors	49RMS																1
Capacitor bank unbalance	51C																8
Restricted earth fault	64REF					2	2	2				2		2			
Two-winding transformer differential	87T							1			1			1			
Machine differential	87M					-				1		-	1				-
	07											0		~			
Directional phase overcurrent("	07	_		2	2	0	2	2	0			2	2	2			
Directional earth fault*	67N/67NC		2	2	2	2	2	2	2	2	2	2	2	2			_
Directional active overpower	32P		2	2	2	2	2	2	2	2	2	2	2	2			
Directional reactive overpower	32Q								1	1	1	1	1	1			
Directional active underpower	37P				2							2					
Phase undercurrent	37								1	1	1						
	18/511 D								1	1	1	-				_	
locked rotor	40/51LR								1								
Starts per hour	66								1	1	1						
Field loss (underimpedance)	40								1	1	1	1	1	1			
Pole slip	78PS								1	1	1	1	1	1			
Overspeed (2 set points) ⁽²⁾	12																
Underspeed (2 set points) ⁽²⁾	14											<u>ц</u>					
Voltage-restrained overcurrent	50V/51V	_										2	2	2			
Underimpedance	21B											1	1	1			
Inadvertent energization	50/27											1	1	1			
Third harmonic undervoltage / 100 % stator earth fault	271N/64G2 64G											2	2	2			
Overfluxing (V / Hz)	24							2				2	2	2			
Undervoltage (L-L or L-N)	27	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Positive sequence undercurrent	27D	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Remanent undervoltage	27R	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Overvoltage (L-L or L-N)	59	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Neutral voltage displacement	59N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Negative sequence overvoltage	47	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	0411					0						0			0	2	2
Overtrequency	81H	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	01L	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Rate of change of frequency	OIR				2	-						-					-
Recloser (4 cycles) ⁽²⁾	79																
Thermostat / Buchholz ⁽²⁾	26/63																
Temperature monitoring (16 RTDs) ⁽³⁾	38/49T																
Synchro-check (4)	25																
Control and monitori	ng																
Circuit breaker / contactor control	94/69																
Automatic transfer (AT) ⁽²⁾																	_
Load shedding / automatic restart						-						-					
De-excitation										-		10.1					
Genset shutdown												1					
Capacitor step control ⁽²⁾																	
Logic discrimination ⁽²⁾	68																
Latching / acknowledgement	86					•						1					•
Annunciation	30					•											
Switching of groups of settings						1						18 C					1
Adaptation using logic equations						•						1					1.1
Logipam programming (Ladder lar	nguage)																
The figures indicate the number of	relays available f	or eac	h prote	ction fu	nction.	-			(5) Wit	hACE	949-2.4	ACE95	9. ACES	937, AC	E969T	P-2,	
■ standard, □ options.	ing of calling a		,						ACE9	59FO-2	or ECI	850 co	mmunic	ation in	iterface	-,), , , , , , , , , , , , , , , , , , ,	
(1) Protection functions with 2 grou	ips of settings.								(o) vvit	TACE	SUIP	or ACE	050-0	commu	riicatioi	ninterfa	ice.

Comparing for programming (Ladden language)
The figures indicate the number of relays available for each protection function.
standard, □ options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional MES120 input/output modules.
(3) With optional MET148-2 temperature input modules.
(4) With optional MCS025 synchro-check module.

Selection table

	9	uheta	tion			Trans	form	ar.	Moto			Gono	rator		Ruch	ar	Can
Metering	S	20 5	81	582	584	TR1		T87	M81	M87	M88	Gene	G87	G 88	B80	al R83	C86
Phase current I1 12 13 RMS				502	304		102				WOO	602	G07	600			
Measured residual current I0, calculated $I0\Sigma$	i i											18 J					
Peak demand current I/1, 12, 13												18 J.					
Measured residual current I'0	1											•					
Voltage U21, U32, U13, V1, V2, V3 Residual voltage V0								÷.				18 H					
Positive sequence voltage Vd / rotation direction Negative sequence voltage Vi																	
Active power P. P1, P2, P3			-	-	-		-	-	-	-	-	÷.,	-	-	-	-	-
Reactive power Q, Q1, Q2, Q3	1											1 B - 1					
Peak demand power PM, QM												18 J.					
Power factor	1			-	-		-	-		-		2.1		-			-
Calculated active and reactive energy $(\pm vri, \pm vAr Active and reactive energy by pulse counting(2)$	<n) td="" <=""><td></td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>- C.</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></n)>		_	-	-	-	-	-	-	-	-	- C.	-	-	-	-	-
(±Wh, ±VARh) Phase current l'1 l'2 l'3 RMS	1																
Calculated residual current l'02	_							<u> </u>									
Voltage U'21, V'1 and frequency	1											-					
frequency	1															•	
Residual voltage V'0	_					_			_			_					
Rotation speed ⁽²⁾	-							Ш									
Neutral point voltage Vnt	-																
Network and machine diagnosis	s																
Tripping context			•		•		•	•				.	•		•	•	•
Tripping current Trip11, Trip12, Trip13	-			-	-			-		-		÷			-	-	<u> </u>
Phase fault and earth fault trip counters	_	_	_	-	-		-	-	-	-	-	÷.,	-	-	-	-	-
Harmonic distortion (THD),					_	_	-	-	-		_	1	-	-	-	_	-
current and voltage Ithd, Úthd	_					_		_	-			÷					
Phase displacement φ0, φ0, φ02 Phase displacement φ1, φ2, φ3				Ξ.	•			Ξ.	÷			18 J.		Ξ.	•	Ξ.	
Disturbance recording	1		-	•	•				•			.			•		
Motor start report (MSR)																	
Motor start trend (MST)		_				-	-	-	÷			L	-	-			-
Thermal capacity used	-		-	-	-	-	-	-	-	-	-	÷.,	-	-	-	-	-
Remaining operating time before overload tripping	3											1.1					
Waiting time after overload tripping	-			•			_	-		-	-	÷	_	-			-
Starting current and time	-					-	-	-	-	-	-		-	-			-
Start inhibit time	-								-	-	-	-					
Number of starts before inhibition	-							_	•	-	-	-		_			
Differential current Idiff1_Idiff2_Idiff3	-							-		-	-	-	-	-			
Through current lt1, lt2, lt3										•							
Current phase displacement 0	-		_		-		-	-		-	-	10.1	-	-		-	
Apparent phase-to-phase impedances Z21, Z32, Z	Z13											. A.					
Third harmonic voltage, neutral point or residual	_																
voltages compared for synchro-check ⁽⁴⁾ Capacitor unbalance current and capacitance	1	I															
Switchgear diagnosis ANSI	cod	е															
CT / VT supervision 60/60FL	1						•	•				•					•
Trip circuit supervision ⁽²⁾ 74	-																
Auxiliary power supply monitoring	_	_	_	-	-	-	-	-	-	-	-	÷.,	-	-	-	-	-
Number of operations, operating time, charging time	ne.				-	-		-	-	-	-	- E	-	-	-	-	
number of racking out operations (2)	,																
Additional modules																	
8 temperature sensor inputs - MET148-2 module ⁽²⁾	2)																
1 low level analog output - MSA141 module																	
Logic inputs/outputs - MES120/MES120G/ MES120H (14I/6O) module	I																
Communication interface - ACE949-2, ACE959, ACE937, ACE969-2 TP, FO, ACE850 TP, FO or ECI8	350 ^I																
Modbus communication, IEC 60	87	0-5-1	03	, DNI	P3 oi	· IEC	6185	50									
Measurement readout ⁽⁵⁾ (6)	1																
Remote control orders ^{(5) (6)}																	
Remote protection setting ⁽⁵⁾	1																
I ranster of disturbance recording data ^{(5) (6)}																	
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												_					

Sensor inputs

Sepam series 80 has analog inputs that are connected to the measurement sensors required for applications:

- main analog inputs, available on all types of Sepam series 80:
- □ 3 phase current inputs I1, I2, I3
- □ 1 residual current input I0
- □ 3 phase voltage inputs V1, V2, V3
- □ 1 residual voltage input V0
- additional analog inputs, dependent on the type of Sepam:
- □ 3 additional phase current inputs l'1, l'2, l'3
- □ 1 additional residual current input I'0
- □ 3 additional phase voltage inputs V'1, V'2, V'3
- □ 1 additional residual voltage input V'0

The table below lists the analog inputs available according to the type of Sepam series 80.

Sepam G88 sensor inputs.

		S80, S81, S82, S84	T81, T82, M81, G82	T87, M87, M88, G87, G88	B80	B83	C86
Phase current inputs	Main channel	11, 12, 13	1, 2, 3	11, 12, 13	1, 2, 3	1, 2, 3	1, 2, 3
	Additional channels			l'1, l'2, l'3			
Residual current inputs	Main channel	10	10	10	10	10	10
	Additional channels	l'O	ľO	l'O	l'O		
Unbalance current inputs for capacitor steps							l'1, l'2, l'3, l'0
Phase voltage inputs	Main channel	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32
	Additional channels				V'1 or U'21	V'1, V'2, V'3 or U'21, U'32	
Residual voltage inputs	Main channel	V0	V0	V0	V0 ⁽¹⁾	V0	V0
	Additional channel					V'0	
Temperature inputs (on MET148-2 module)			T1 to T16	T1 to T16			T1 to T16

(on MET148-2 module)

Note: by extension, an additional measurement (current or voltage) is a value measured via an additional analog channel. (1) Available with phase voltage U21, U32.

General settings

The general settings define the characteristics of the measurement sensors connected to Sepam and determine the performance of the metering and protection functions used. They are accessed via the SFT2841 setting software "General Characteristics", "CT-VT Sensors" and "Particular characteristics" tabs.

Gene	ral settings	Selection	Value
ln, l'n	Rated phase current	2 or 31A/5ACTs	1 A to 6250 A
	(sensor primary current)	3 LPCTs	25 A to 3150 A ⁽¹⁾
ľ'n	Unbalance current sensor rating (capacitor application)	CT1A/2A/5A	1 A to 30 A
lb	Base current, according to rated power of equipment		0.2 to 1.3 In
ľb	Base current on additional channels	Applications with transformer	l'b = lb x Un1/Un2
	(not adjustable)	Other applications	l'b = lb
In0, l'n0	Rated residual current	Sum of 3 phase currents	See In(I'n) rated phase current
		CSH120 or CSH200 core balance CT	2 A or 20 A rating
		1 A/5 A CT + CSH30 interposing ring CT	1 A to 6250 A
		Core balance CT + ACE990 (the core balance CT	According to current monitored
		ratio 1/n must be such that $50 \le n \le 1500$)	and use of ACE990
Unp, U'np	Rated primary phase-to-phase voltage (Vnp: rated primary phase-to-neutral voltage Vnp = Unp/ $\sqrt{3}$)		220 V to 250 kV
Uns,	Rated secondary phase-to-phase voltage	3 VTs: V1, V2, V3	90 to 230 V
U'ns		2 VTs: U21, U32	90 to 120 V
		1 VT: U21	90 to 120 V
		1 VT: V1	90 to 230 V
Uns0, U'nso	Secondary zero sequence voltage for primary zero sequence voltage Unp/ $\sqrt{3}$		Uns/3 or Uns/ $\sqrt{3}$
Vntp	Neutral point voltage transformer primary voltage (generator application)		220 V to 250 kV
Vnts	Neutral point voltage transformer secondary voltage (generator application)		57.7 V to 133 V
fn	Rated frequency		50 Hz or 60 Hz
	Phase rotation direction		1-2-3 or 1-3-2
	Integration period (for demand current and peak demand current and power)		5, 10, 15, 30, 60 min
	Pulse-type accumulated energy meter	Increments active energy	0.1 kWh to 5 MWh
		Increments reactive energy	0.1 kVARh to 5 MVARh
Р	Rated transformer power		100 kVA to 999 MVA
Un1	Rated winding 1 voltage (main channels: I)		220 V to 220 kV
Un2	Rated winding 2 voltage (additional channels: l')		220 V to 400 kV
ln1	Rated winding 1 current (not adjustable)		$\ln 1 = P/(\sqrt{3} \text{ Un1})$
In2	Rated winding 2 current (not adjustable)		$\ln 2 = P/(\sqrt{3} Un2)$
	Transformer vector shift		0 to 11
Ωn	Rated speed (motor, generator)		100 to 3600 rpm
R	Number of pulses per rotation (for speed acquisition)		1 to 1800 (Ωn x R/60 ≤ 1500)
	Zero speed set point		5 to 20 % of Ωn
	Number of capacitor steps		1 to 4
	Connection of capacitor steps		Star / Delta
	Capacitor step ratio	Step 1	1
		Step 2	1,2
		Step 3	1, 2, 3, 4
		Step 4	1, 2, 3, 4, 6, 8

(1) In values for LPCT, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Metering and diagnosis Description

Metering

Sepam is a precision metering unit. All the metering and diagnosis data used for commissioning and required

for the operation and maintenance of your equipment are available locally

or remotely, expressed in the units concerned (A, V, W, etc.).

Phase current

RMS current for each phase, taking into account harmonics up to number 13. Different types of sensors may be used to meter phase

Different types of sensors may be use current:

■ 1 A or 5 A current transformers

■ LPCT type current sensors.

Residual current

Four types of residual current values are available depending on the type of Sepam and sensors connected to it:

• 2 residual currents $IO\Sigma$ and $I'O\Sigma$, calculated by the vector sum of the 3 phase currents

2 measured residual currents I0 and I'0.

Different types of sensors may be used to measure residual current:

CSH120 or CSH200 specific core balance CT

■ conventional 1 A or 5 A current transformer with

CSH30 interposing ring CT any core balance CT with an ACE990 interface.

Demand current and peak demand currents

Demand current and peak demand currents are calculated according to the 3 phase currents 11, 12 and 13:

■ demand current is calculated over an adjustable period of 5 to 60 minutes

peak demand current is the greatest demand current and indicates the current drawn by peak loads. Peak demand currents may be cleared.

Voltage and frequency

The following measurements are available according to the voltage sensors connected:

■ phase-to-neutral voltages V1, V2, V3 and V'1, V'2, V'3

■ phase-to-phase voltages U21, U32, U13 and U'21, U'32, U'13

residual voltage V0, V'0 or neutral point voltage Vnt
 positive sequence voltage Vd, V'd and negative sequence voltage Vi, V'i

■ frequency measured on the main and additional voltage channels.

Power

Powers are calculated according to the phase currents I1, I2 and I3:

- active power
- reactive power
- apparent power
- power factor (cos φ).

According to the sensors used, power calculations may be based on the 2 or 3 wattmeter method.

The 2 wattmeter method is only accurate when there is no residual current and it is not applicable if the neutral is distributed.

The 3 wattmeter method gives an accurate calculation of 3-phase and phase by phase powers in all cases, regardless of whether or not the neutral is distributed.

Peak demand powers

The greatest demand active and reactive power values calculated over the same period as the demand current. The peak demand powers may be cleared.

Energy

■ 4 accumulated energies calculated according to voltages and phase currents I1, I2 and I3 measured: active energy and reactive energy in both directions

■ 1 to 4 additional accumulated energy meters for the acquisition of active or reactive energy pulses from external meters.

Temperature

Accurate measurement of temperature inside equipment fitted with Pt100, Ni100 or Ni120 type RTDs, connected to the optional remote MET148-2 module.

Rotation speed

Calculated by the counting of pulses transmitted by a proximity sensor at each passage of a cam driven by the rotation of the motor or generator shaft. Acquisition of pulses on a logic input.

Phasor diagram

A phasor diagram is displayed by SFT2841 software and the mimic-based UMI to check cabling and assist in the setting and commissioning of directional and differential protection functions.

According to the connected sensors, all current and voltage information can be selected for display in vector form.

Datalog (DLG)

This function is used to record and back up a set of measurements (1 to 15) available in the Sepam relay. The number of backed-up files and the number of measurements per file depend on the type of cartridge installed (extended cartrige available for Sepam 80 only). The recording mode and selection of measurements can be configured by the user via the SFT2841 software.

All trip of the function results from an external event (TC for example). The stop condition and file management differ according to which of the following 2 modes is used:

a) Limited: the DLG function stops automatically when the end of recording time is reached or on receipt of an external event (TC for example).

b) Circular: the file content is managed in a FIFO memory: when the file is full, the write operation continues and starts again at the start of the file. Stopping the write operation only results from an external event (TC for example). In the absence of the stop command, recording is continuous.

Using the DLG function does not affect the quality of service of Sepam's active protection functions.

Characteristics				
Configuration parameters				
Content of a COMTRADE file	 Configuration file (*.CFG): date, variable characteristics, transformation ratio of the selected variable values Samples file(*.DAT): recorded variables 			
Total file duration	1 s to 30 days			
Sampling period	1 s to 24 hours			
Variables available for recording	See the table of available data p.149/150.			
Number of files	1 to 20			
Number of variables per file	1 to 15			
Source of starting and stopping	 SFT 2841 software Logic equation or Logipam TC Logic or GOOSE input 			
File format	COMTRADE 97			
Nota : These parameters are configured with the SFT2841 software.				
Metering and diagnosis

Description

Network diagnosis assistance

Sepam provides network power quality metering functions, and all the data on network disturbances detected by Sepam are recorded for analysis purposes.

Tripping context

Storage of tripping currents and I0, Ii, U21, U32, U13, V1, V2, V3, V0, Vi, Vd, F, P, Q, Idiff, It and Vnt values when tripping occurs. The values for the last five trips are stored.

Tripping current

Storage of the 3 phase currents and earth fault current at the time of the last Sepam trip order, to indicate fault current.

The values are stored in the tripping contexts.

Number of trips

2 trip counters:

number of phase fault trips, incremented by each trip triggered by ANSI 50/51,

50V/51V and 67 protection functions

■ number of earth fault trips, incremented by each trip triggered by ANSI 50N/51 and 67N/67NC protection functions.

Negative sequence / unbalance

Negative sequence component of phase currents I1, I2 and I3 (and I'1, I'2 and I'3), indicating the degree of unbalance in the power supplied to the protected equipment.

Total harmonic distortion

Two THD values calculated to assess network power quality, taking into account harmonics up to number 13:

current THD, calculated according to I1

■ voltage THD, calculated according to V1 or U21.

Phase displacement

■ phase displacement ϕ 1, ϕ 2, ϕ 3 between phase currents I1, I2, I3 and voltages V1, V2, V3 respectively

phase displacement φ0 between residual current and residual voltage.

Disturbance recording

- Recording triggered by user-set events:
- all sampled values of measured currents and voltages
- status of all logic inputs and outputs logic data: pick-up, ...

Recording character	eristics				
Number of recordings in	COMTRADE forma	t	Adjustable from	1 to 19	
Total duration of a recording 1 s tr if usi 1 s tr if usi			1 s to 20 s if using a standard cartridge 1 s to 32 s if using an extended cartridge		
Number of samples per p	period		12 or 36		
Duration of recording prior to occurrence of the event			Adjustable from 0 to 99 periods		
Maximum recordin	g capability				
Network frequency Cartridge			36 samples per Cartridge	r period	
	Standard	Extended	Standard	Extended	
50 Hz	22 s	35 s	7 s	11 s	
60 Hz	18 s	11 s	6s	9 s	

Voltage comparison for synchro-check

For the synchro-check function, the MCS025 module continuously measures the amplitude, frequency and phase differences between the 2 voltages to be checked.

Out-of-sync context

Storage of amplitude, frequency and phase differences between the 2 voltages measured by the MCS025 module when a closing order is inhibited by the synchro-check function.

Description

Machine diagnosis assistance

Sepam assists facility managers by providing:

- data on the operation of their machines
- predictive data to optimize process management
- useful data to facilitate protection function setting and implementation.
- recording data during motor start (MSR) and create trend graphics (MST).

Thermal capacity used

Equivalent temperature buildup in the machine, calculated by the thermal overload protection function.

Displayed as a percentage of rated thermal capacity.

Remaining operating time before overload tripping

Predictive data calculated by the thermal overload protection function. The time is used by facility managers to optimize process management in real time by deciding to:

■ interrupt according to procedures

continue operation with inhibition of thermal protection on overloaded machine.

Waiting time after overload tripping

Predictive data calculated by the thermal overload protection function. Waiting time to avoid further tripping of thermal overload protection by premature re-energizing of insufficiently cooled down equipment.

Running hours counter / operating time

Equipment is considered to be running whenever a phase current is over 0.1 lb. Cumulative operating time is given in hours.

Motor starting / overload current and time

A motor is considered to be starting or overloaded when a phase current is over

- 1.2 lb. For each start / overload, Sepam stores: maximum current drawn by the motor
- starting / overload time.

The values are stored until the following start / overload.

Number of starts before inhibition/start inhibit time

Indicates the number of starts still allowed by the starts per hour protection function and, if the number is zero, the waiting time before starting is allowed again.

Differential and through current

Values calculated to facilitate the implementation of ANSI 87T and 87M differential protection functions.

Current phase displacement

Phase shift between the main phase currents and additional phase currents to facilitate implementation of ANSI 87T differential protection function.

Apparent positive sequence impedance Zd

Value calculated to facilitate the implementation of the underimpedance field loss protection (ANSI 40).

Apparent phase-to-phase impedances Z21, Z32, Z13

Values calculated to facilitate the implementation of the backup underimpedance protection function (ANSI 21B).

Third harmonic neutral point or residual voltage

Values measured to facilitate the implementation of the third harmonic undervoltage / 100 % stator earth fault protection function (ANSI 27TN/64G2).

Capacitance

Measurement, for each phase, of the total capacitance of the connected capacitor bank steps. This measurement is used to monitor the condition of the capacitors.

Capacitor unbalance current

Measurement of the unbalance current for each capacitor bank step. This measurement is possible when the steps are connected in a double star arrangement.

Metering and diagnosis

Description

Visualisation of 3 graphics MSR via an integrated synoptic HMI. DE811 MSR 2001/01/01 00:59:00.364 447A 11.7kV ld fund <2s> Vd fund 2 、 -0.00x1 0.00x1 Rotor temp <200 C 🗲 0.00rpm 447A Id fund 🖨 calc. speed <2s Remote Local $(\mathbf{L}$ Test Time tagging of the selected file and file 1 selection zone

- 2 Name of the 1st variable associated with the Y-axis
- 3 Selection zone for the variable to be associated with the Y-axis
- 4 Maximum value observed for the recorded variable
- 5 Duration of read time

Visualisation of 3 graphics MST via an integrated synoptic HMI.

- 3 Name of the analyzed variable
- 4 Duration of read time for each file

Motor Start Report (MSR)

This function, available only in motor applications, can stock during a configured duration multiple files of 144 data samples selected.

Read

The files can be viewed:

a) after downloading, on a PC screen, using the WaveWin softwareb) on the Sepam display using the Diagnosis menu.

Caractéristiques					
Paramètres de configuration	n				
Content of a COMTRADE file	 Fichier de configuration (*.CFG): date, variable characteristics, transformation ratio of the selected variable values Samples file (*.DAT): recorded variables 				
Total file duration	2 s to 144 s				
Sampling frequency	Depends on the configured duration (144 s maximum). Example: For a duration of 144 s the frequency is 1 Hz, for a duration of 2 s the frequency is 72 Hz.				
Variables available for recording	See the table of available data . p. 149/150				
Number of files	 1 to 5 with standard cartridge 1 to 20 with extended cartridge 				
Number of variables per file	 1 to 5 with standard cartridge 1 to 10 with extended cartridge 				
Source of starting and stopping	 SFT 2841 software Logic equation or Logipam TC Logic or GOOSE input 				
File format	COMTRADE 97				
Nota	Nota : These parameters are configured with the SFT2841 software.				

Motor Start Trend (MST)

This function, only available for motor applications, is related to the Motor start trend function. It is used to calculate and display in the form of curves the minimum, demand and maximum values for each value.

These recalculated values which are stored in a file of 144 samples covering a 30day period. When the current 30-day period has ended, it is automatically archived in COMTRADE format and will no longer be able to be viewed on the Sepam display

The number of files available varies between 12 and 18 depending on the type of memory cartridge (standard or extended) installed on Sepam

The trends are only recalculated at the end of each Motor start report.

Calculating an MST using the available MSRs.

Description

Sepam self-diagnosis

Sepam includes a number of self-tests carried out in the base unit and optional modules. The purpose of the self-tests is to:

 detect internal failures that may cause nuisance tripping or failed fault tripping

■ put Sepam in fail-safe position to avoid any

unwanted operation

■ alert the facility manager of the need for maintenance operations

Internal failure

Two categories of internal failures are monitored: ■ major failures: Sepam shutdown (to fail-safe position)

The protection functions are inhibited, the output relays are forced to drop out and the "Watchdog" output indicates Sepam shutdown

■ minor failures: downgraded Sepam operation.

Sepam's main functions are operational and equipment protection is ensured.

Battery monitoring

Monitoring of battery voltage to guarantee data is saved in the event of an outage. A battery fault generates an alarm.

Detection of plugged connectors

The system checks that the current or voltage sensors are plugged in. A missing connector is a major failure.

Configuration checking

The system checks that the optional modules configured are present and working correctly. The absence or failure of a remote module is a minor failure, the absence or failure of a logic input/output module is a major failure

Switchgear diagnosis assistance

Switchgear diagnosis data give facility managers information on:

- mechanical condition of breaking device
- Sepam auxiliaries

and assist them for preventive and curative switchgear maintenance actions. The data are to be compared to switchgear manufacturer data.

ANSI 60/60FL - CT/VT supervision

Used to monitor the entire metering chain:

- CT and VT sensors
- connection
- Sepam analog inputs.
- Monitoring includes:
- consistency checking of currents and voltages measured

 acquisition of phase or residual voltage transformer protection fuse blown contacts

In the event of a loss of current or voltage measurement data, the assigned protection functions may be inhibited to avoid nuisance tripping

ANSI 74 - Trip/closing circuit supervision

To detect trip circuit and closing circuit failures, Sepam monitors:

- shunt trip coil connection
- closing coil connection
- matching of breaking device open/closed position contacts

01

execution of breaking device open and close orders.

The trip and closing circuits are only supervised when connected as shown below.

DF88138

 $\overline{\mathcal{N}}$

Connection for shunt trip coil monitoring.

Connection for undervoltage trip coil monitoring

Connection for closing circuit supervision

Auxiliary power supply monitoring

The voltage rating of Sepam's auxiliary supply should be set between 24 V DC and 250 V DC

If the auxiliary supply drifts, 2 alarms may be triggered:

■ high set point alarm, adjustable from 105 % to 150 % of rated supply (maximum 275 V)

■ low set point alarm, adjustable from 60 % to 95 % of rated supply (minimum 20 V).

Cumulative breaking current monitoring

Six cumulative currents are proposed to assess breaking device pole condition:

- total cumulative breaking current
- cumulative breaking current between 0 and 2 In
- cumulative breaking current between 2 In and 5 In
- cumulative breaking current between 5 In and 10 In
- cumulative breaking current between 10 In and 40 In
- cumulative breaking current > 40 In.

Each time the breaking device opens, the breaking current is added to the cumulative total and to the appropriate range of cumulative breaking current.

Cumulative breaking current is given in (kA)².

An alarm can be generated when the total cumulative breaking current exceeds a set point.

Number of operations

Cumulative number of opening operations performed by the breaking device.

Circuit breaker operating time and charging time Number of rackouts

Used to assess the condition of the breaking device operating mechanism.

Characteristics

						Available data		
Functions		measurement	Accuracy ⁽¹⁾	MSA141	Saving	MSR/MST		
		range	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Designation	Units	
Metering								
Phase current		0.02 to 40 ln	+0.5%	-	1	1		
	Main channels	0,02 10 40 111	10,0 %	-		11 12 13	Α	
	Additional channels					11,12,13	Α	
Residual current	Measured	0.005 to 20 ln	+1 %	-		10m l'0m	Δ	
Residual current		0,005 to 20 lm	+1 %				Δ	
Demand current	Calculated	0,000 to 40 ln	+0.5%	-		11mov 12mov 13mov	Δ	
Peak demand currer	at	0,02 to 40 ln	+0.5 %			11moy, 12moy, 13moy	Δ	
Valtara matarin		0,02 10 40 111	10,5 %			TITIAX, IZITIAX, ISITIAX	A	
voltage meterin								
Phase-to-phase	Main channels (U)	0,06 to 1,2 Unp	±0,5 %	•		U21, U32, U31	V	
voltage	Additional channels.					U'21, U'32, U'31	V	
Phase-to-neutral	Main channels (V)	0,06 to 1,2 Vnp	±0,5 %	-		V1, V2, V3	V	
voltagee	Additional channels					V'1, V'2, V'3	V	
Residual voltage		0,04 to 3 Vnp	±1 %			V0, V'0	V	
Neutral point voltage	9	0,04 to 3 Vntp	±1 %			Vnt	V	
Positive sequence v	oltage	0,05 to 1,2 Vnp	±2 %			Vd, V'd	V	
Negative sequence	voltage	0,05 to 1,2 Vnp	±2 %			Vi, V'i	V	
Frequency	Main channels (f)	25 to 65 Hz	±0.02 Hz			F. F'	Hz	
Power metering	1		- / -			,		
Active power (total o	r por phaso)	0.015 Sp to 000 MW	±1 %	-	1	P	N/\\/	
Active power (total o		0,013 311 (0 999 10100	±1 /0	-			N/1\A/	
Active power per price		0.015 Sp to 000 M/W	+1 0/			FI, FZ, FS		
Peak demand active		0,015 Sil (0 999 WW	±1 %			Filida	IVI V V	
Reactive power (tota	al or per priase)	0,015 511 (0 999 101081	±1%	-			Ivivar	
Reactive power per	pnase	0.045.0 . 1. 000.14	. 1. 0/			Q1, Q2, Q3	Ivivar	
Peak demand reacti	ve power	0,015 Sh to 999 MVar	±1%			Qmax	IVIVar	
Apparent power (tota	al or per phase)	0,015 Sn to 999 MVA	±1 %	-		S Of OD OD	MVA	
Apparent power per	phase					\$1, \$2, \$3	MVA	
Peak demand appar	ent power					Smax	MVA	
Power factor ($\cos \varphi$)		-1 to +1 (CAP/IND)	±0,01	•		cosPhi	MVA	
Apparent power	Measured (+ and -)					Eam+, Eam-	MW.h	
	Calculated (+ and -)	0 to 2,1.10 ⁸ MW.h	±1 % ±1 digit			Eac+, Eac-	MW.h	
Reactive power	Measured (+ and -)					Erm+, Erm-	Mvar.h	
	Calculated (+ and -)	0 to 2,1.10 ⁸ Mvar.h	±1 % ±1 digit			Erc+, Erc-	Mvar.h	
Other metering								
			±1 °C					
		-30 to +200 °C	de +20 to +140					
Temperature		or	°C	-		T1 to T16	°C/°F	
		-22 to +392 °F	±1,8 °F de +68 to +284 °F					
Deteller seed		0.1. 7000.1.(Dulla	1.1	
Rotation speed		0 to 7200 tr/mn	±1 tr/mn			Rot104	tr / mn	
Network diagno	osis assistance							
Tripping context								
Tripping current		0,02 to 40 In	±5 %					
Number of trips		0 to 65535	-					
Negative sequence	/ unbalance	1 to 500 % lb	±2 %			li / lb	% lb or % l'b	
Total harmonic disto	rtion, current	0 to 100 %	±1 %			Ithd	%	
Total harmonic disto	rtion, voltage	0 to 100 %	±1 %			Uthd	%	
Phase displacement	t φ 0 (between V0 & I0)	0 to 359°	±2°					
Phase displacement	t φ 0, φ'0, φ'0Σ					φ 0, φ'0, φ'0Σ	٥	
Phase displacement	t φ 1, φ2, φ 3	0 to 359°	±2°			φ1.φ2.φ3	0	
(between V & I)		0.0000				Ψ.,ΨΞ,ΨΫ	0/	
i nermai capacity us	ea					ECh	%	
Running hours coun	ter					СН	hours	
Phase differential cu	rrent					Iditt1, Idif2, Idiff3	A	
Disturbance recordin	ng							
Amplitude difference	9	0 to 1,2 Usync1	±1 %					
Frequency difference	e	0 to 10 Hz	±0,5 Hz		ļ			
Phase difference		0 to 359°	±2°		ļ			
Out-of-sync contex								

a vailable on MSA141 analog output module, according to setup
saved in the event of auxiliary supply outage, even without battery
saved by battery in the event of auxiliary supply outage
(1) Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, cos φ > 0.8..

Characteristics

					Available data	
Functions	Measurement	Accuracy	MSA141	Saving	MSR/MST	
	range				Description	Units
Machine operating assistance					Decemption	Onico
Phase-to-phase voltages [121] [22] [13	0.06 to 1.2 Upp	+0.5 %			1121 1122 1113	V
1 12 13	0.02 to 40 ln	+0.5 %	-		11 12 13	Δ
11,12,10	0,02 10 40 11	+1 °C	_		11,12,10	
Temperature	-30 to +200 °C or -22 to +392 °F	de +20 to +140 °C ±1,8 °F de +68 to +284 °F			T1 à T16	°C/°F
Rotor speed of rotation caculated via 49RMS motor					Rot49	tr / mn
Rotor speed of rotation mesured via I104 input	0 to 7200 tr/mn	±1 tr/mn			Rot104	tr / mn
Motor thermal capacity used ⁽²⁾ 0 to 800 % (100 % for I phase = Ib)	±1 %	-			М	pu
Rotor thermal capacity used ⁽²⁾					W	pu
Rotor resistance (2)					Rr+	Ω
Stator thermal capacity used (2)					E	pu
Stator resistance (3)					Rs	Ω
Positive-sequence current					ld	A
Negative-sequence current					li	A
Positive-sequence voltage	0,05 to 1,2 Vnp	±2 %			Vd	V
Negative-sequence voltage	0,05 to 1,2 Vnp	±2 %			Vi	V
Residual current Measured	0,005 to 20 In	±1 %			10	А
Calculated	0,005 to 40 In	±1 %			10_S	А
Measured residual voltage					V0	V
Motor torque ⁽²⁾					С	pu
Slip (calculated via 49RMS motor)					g	pu
Frequency ⁽⁴⁾					F	Hz
Remaining operating time before overload tripping	0 à 999 mn	±1 mn				
Waiting time after overload tripping	0 à 999 mn	±1 mn				
Running hours counter / operating time	0 à 65535 heures	±1 % ou ±0,5 h				
Starting current	1,2 lb à 40 ln	±5 %				
Starting time	0 à 300 s	±300 ms				
Number of starts before inhibition	0 à 60	-				
Start inhibit time	0 à 360 mn	±1 mn				
Phase displacement ϕ 1, ϕ 2, ϕ 3 (between I)	0 à 359°	±2°				
Apparent impedance Zd, Z21, Z32, Z13	0 à 200 kΩ	±5 %				
Capacitance	0 à 30 F	±5 %				
Switchgear diagnosis assistance						
Cumulative breaking current	0 à 65535 kA ²	±10 %				
Number of operations	0 à 4.10 ⁹	-				
Operating time	20 à 100 ms	±1 ms				
Charging time	1 à 20 ms	±0,5 s				
Number of rackouts	0 à 65535	-				

available on MSA141 analog output module, according to setup

saved by battery in the event of auxiliary supply outage, even without battery saved by battery in the event of auxiliary supply outage.

(1) Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, $\cos \varphi > 0.8$..

The value used is that provided by the 49RMS motor thermal overload protection if this has been activated. The value is 0 if the 49RMS generic thermal (2)

overload protection has been activated.

(3) The value used is that for the active 49RMS protection: motor thermal overload or generic thermal overload.

(4) Only available for the main voltage channels.

Current protection functions

ANSI 50/51 - Phase overcurrent

Phase-to-phase short-circuit protection.

2 modes:

 overcurrent protection sensitive to the highest phase current measured

machine differential protection sensitive to the highest differential phase currents obtained in self-

balancing schemes.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT), IDMT (choice of 16 standardized
- IDMT curves) or customized curve
- with or without timer hold
- tripping confirmed or unconfirmed, according to parameter setting:
- unconfirmed tripping: standard
- □ tripping confirmed by negative sequence overvoltage protection (ANSI 47, unit 1), as backup for distant

2-phase short-circuits □ tripping confirmed by undervoltage protection

(ANSI 27, unit 1), as backup for phase-to-phase shortcircuits in networks with low short-circuit power.

ANSI 50N/51N or 50G/51G - Earth fault

Earth fault protection based on measured or calculated residual current values:

- ANSI 50N/51N: residual current calculated or
- measured by 3 phase current sensors
- ANSI 50G/51G: residual current measured directly by a specific sensor.

Characteristics

- 2 groups of settings
- definite time (DT), IDMT (choice of 17 standardized
- IDMT curves) or customized curve
- with or without timer hold

■ second harmonic restraint to ensure stability during transformer energizing, activated by parameter setting.

ANSI 50BF - Breaker failure

If a breaker fails to be triggered by a tripping order, as detected by the non-extinction of the fault current, this backup protection sends a tripping order to the upstream or adjacent breakers.

ANSI 46 - Negative sequence / unbalance

Protection against phase unbalance, detected by the measurement of negative sequence current.

■ sensitive protection to detect 2-phase faults at the ends of long lines

■ protection of equipment against temperature buildup, caused by an unbalanced power supply, phase inversion or loss of phase, and against phase current unbalance.

Characteristi cs

■ 1 definite time (DT) curve

■ 9 IDMT curves: 4 IEC curves and 3 IEEE curves, 1 ANSI curve in RI² and 1 specific Schneider curve

ANSI 49RMS - Thermal overload

Protection against thermal damage caused by overloads on

- machines (transformers, motors or generators)
- cables
- capacitors

The thermal capacity used is calculated according to a mathematical model which takes into account:

- current RMS values
- ambient temperature
- negative sequence current, a cause of motor rotor temperature rise.

The thermal capacity used calculations may be used to calculate predictive data for process control assistance.

The protection may be inhibited by a logic input when required by process control conditions.

Thermal overload for machines - Characteristics

- 2 groups of settings
- 1 adjustable alarm set point
- 1 adjustable tripping set point

■ adjustable initial thermal capacity used setting, to adapt protection characteristics to fit manufacturer's thermal withstand curves

equipment heating and cooling time constants.

The cooling time constant may be calculated automatically based on measurement of the equipment temperature by a sensor.

Thermal overload for cables - Characteristics

- 1 group of settings
- cable current carrying capacity, which determines alarm and trip set points
- cable heating and cooling time constants.

Thermal overload for capacitors - Characteristics

- 1 group of settings
- alarm current, which determines the alarm set point
- overload current, which determines the tripping set point
- hot tripping time and current setting, which determine a point on the tripping curve.

Thermal overload for transformers - Characteristics

This function is used to protect a transformer against overloads, based on the measurement of the current taken. IEC standard 60076-2 proposes 2 thermal models for evaluating the winding thermal capacity used during an overload, depending on whether the transformer is dry-type or immersed.

Taking account of harmonics

The equivalent current leq measured by the transformer thermal overload protection is the highest of the phase rms currents (the rms current takes account of harmonic numbers up to 13).

Taking account of 2 operating conditions

The choice between thermal sets 1 and 2 is made by the "switching of thermal settings" logic input. This means you can have thermal set 1 for normal transformer operation and thermal set 2 for unusual transformer operation.

ANSI 51C - Capacitor bank unbalance

Detection of capacitor step internal faults by measuring the unbalance current flowing between the two neutral points of a step connected in a double star arrangement. Four unbalance currents can be measured to protect up to 4 steps.

Characteristics

- 2 set points per step
- definite time (DT) curve.

Recloser

ANSI 79

Automation device used to limit down time after tripping due to transient or semi-permanent faults on overhead lines. The recloser orders automatic reclosing of the breaking device after the time delay required to restore the insulation has elapsed.

Recloser operation is easy to adapt for different operating modes by parameter setting.

Characteristics

■ 1 to 4 reclosing cycles, each cycle has an adjustable dead time

■ adjustable, independent reclaim time and safety time until recloser ready time delays

■ cycle activation linked to instantaneous or timedelayed short-circuit protection function (ANSI 50/51, 50N/51N, 67, 67N/67NC) outputs by parameter setting

inhibition/locking out of recloser by logic input.

Synchro-check

ANSI 25

This function checks the voltages upstream and downstream of a circuit breaker and allows closing when the differences in amplitude, frequency and phase are within authorized limits.

Characteristics

■ adjustable and independent set points for differences in voltage, frequency and phase

■ adjustable lead time to take into account the circuitbreaker closing time

■ 5 possible operating modes to take no-voltage conditions into account.

Differential protection functions

ANSI 64REF - Restricted earth fault differential

Detection of phase-to-earth faults on 3-phase windings with earthed neutral, by comparison of residual current calculated from the 3 phase currents and residual current measured at the neutral point.

Characteristics

instantaneous tripping

percentage-based characteristic with fixed slope and adjustable low set point
 more sensitive than transformer or machine differential protection.

ANSI 87T - Transformer and transformer-machine unit differential (2 windings)

Phase-to-phase short-circuit protection of two-winding transformers or transformermachine units.

Protection based on phase by phase comparison of the primary and secondary currents with:

■ amplitude and phase correction of the currents in each winding according to the transformer vector shift and the voltage values set

■ clearance of zero sequence current from the primary and secondary windings (suitable for all earthing systems).

Characteristics

instantaneous tripping

adjustable high set point for fast tripping for violent faults, with no restraint

percentage-based characteristic with two adjustable slopes and adjustable low set point

■ restraint based on percentage of harmonics. These restraints prevent nuisance tripping during transformer energizing, during faults outside the zone that provoke saturation of the current transformers and during operation of a transformer supplied with excessive voltage (overfluxing).

□ self-adapting neural network restraint: this restraint analyzes the percentage of harmonics 2 and 5 as well as differential and through currents

□ restraint based on the percentage of harmonic 2 per phase or total

□ restraint based on the percentage of harmonic 5 per phase or total.

Self-adapting restraint is exclusive with respect to restraints on the percentage of harmonic 2 or on the percentage of harmonic 5.

■ restraint on energization. This restraint, based on the magnetizing current of the transformer or on a logic equation or Logipam, ensures stability of transformers that have low harmonic percentages on energization

■ fast restraint upon loss of sensor.

ANSI 87M - Machine differential

Phase-to-phase short-circuit protection, based on phase by phase comparison of the currents on motor and generator windings.

Characteristics

- instantaneous tripping
- fixed high set point for fast tripping for violent faults, with no restraint
- percentage-based characteristic with fixed slope and adjustable low set point
- tripping restraint according to percentage characteristic activated by detection of:
- □ external fault or machine starting
- □ sensor saturation or disconnection
- □ transformer energizing (harmonic 2 restraint)

Protection Description

Tripping characteristic of ANSI 67N/67NC type 1 protection (characteristic angle $\theta 0 \neq 0^{\circ}$).

Tripping characteristic of ANSI 67N/67NC type 2 protection (characteristic angle $\theta 0 \neq 0^{\circ}$).

Tripping characteristic of ANSI 67N/67NC type 3 protection.

Directional current protection

ANSI 67 - Directional phase overcurrent

Phase-to-phase short-circuit protection, with selective tripping according to fault current direction.

It comprises a phase overcurrent function associated with direction detection, and picks up if the phase overcurrent function in the chosen direction (line or busbar) is activated for at least one of the 3 phases.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- choice of tripping direction

■ definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve

with voltage memory to make the protection insensitive to loss of polarization voltage at the time of the fault

with or without timer hold.

ANSI 67N/67NC - Directional earth fault

Earth fault protection, with selective tripping according to fault current direction. 2 types of operation:

- type 1, projection
- type 2, according to the magnitude of the residual current phasor.

ANSI 67N/67NC type 1

Directional earth fault protection for impedant, isolated or compensated neutral systems, based on the projection of measured residual current.

Type 1 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- characteristic projection angle
- no timer hold

with voltage memory to make the protection insensitive to recurrent faults in compensated neutral systems.

ANSI 67N/67NC type 2

Directional overcurrent protection for impedance and solidly earthed systems, based on measured or calculated residual current.

It comprises an earth fault function associated with direction detection, and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

- Type 2 characteristics
- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized
- curve
- choice of tripping direction
- with or without timer hold.

ANSI 67N/67NC type 3

Directional overcurrent protection for distribution networks in which the neutral earthing system varies according to the operating mode, based on measured residual current.

It comprises an earth fault function associated with direction detection (angular sector tripping zone defined by 2 adjustable angles), and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

This protection function complies with the CEI 0-16 Italian specification.

- Type 3 characteristics
- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- no timer hold

Directional power protection functions

ANSI 32P - Directional active overpower

Two-way protection based on calculated active power, for the following applications:

■ active overpower protection to detect overloads and allow load shedding

■ reverse active power protection:

against generators running like motors when the generators consume active power

against motors running like generators when the motors supply active power.

ANSI 32Q - Directional reactive overpower

Two-way protection based on calculated reactive power to detect field loss on synchronous machines: reactive overpower protection for motors which consume more reactive power with field loss

■ reverse reactive overpower protection for generators which consume reactive power with field loss.

ANSI 37P - Directional active underpower

Two-way protection based on calculated active power Checking of active power flows:

■ to adapt the number of parallel sources to fit the network load power demand

■ to create an isolated system in an installation with its own generating unit.

Machine protection functions

ANSI 37 - Phase undercurrent

Protection of pumps against the consequences of a loss of priming by the detection of motor no-load operation.

It is sensitive to a minimum of current in phase 1, remains stable during breaker tripping and may be inhibited by a logic input.

ANSI 48/51LR - Locked rotor / excessive starting time

Protection of motors against overheating caused by:

■ excessive motor starting time due to overloads (e.g. conveyor) or insufficient supply voltage.

The reacceleration of a motor that is not shut down, indicated by a logic input, may be considered as starting.

Iocked rotor due to motor load (e.g. crusher):

□ in normal operation, after a normal start

□ directly upon starting, before the detection of excessive starting time, with detection of locked rotor by a zero speed detector connected to a logic input, or by the underspeed function.

ANSI 66 - Starts per hour

Protection against motor overheating caused by:

■ too frequent starts: motor energizing is inhibited when the maximum allowable number of starts is reached, after counting of:

□ starts per hour (or adjustable period)

□ consecutive motor hot or cold starts (reacceleration of a motor that is not shut down, indicated by a logic input, may be counted as a start)

■ starts too close together in time: motor re-energizing after a shutdown is only allowed after an adjustable waiting time.

ANSI 40 - Field loss (underimpedance)

Protection of synchronous machines against field loss, based on the calculation of positive sequence impedance on the machine terminals or transformer terminals in the case of transformer-machine units.

Characteristics

■ 2 circular characteristics defined by reactances Xa, Xb and Xc

2 circular tripping characteristics of ANSI 40 protection.

■ tripping when the machine's positive sequence impedance enters one of the circular characteristics.

■ definite (DT) time delay for each circular characteristic

■ setting assistance function included in SFT2841 software to calculate the values of Xa, Xb and Xc according to the electrical characteristics of the machine (and transformer, when applicable).

ANSI 78PS - Pole slip

Protection against loss of synchronism on synchronous machines, based on calculated active power.

2 types of operation: ■ tripping according to the equal-area criterion,

time-delayed tripping according to power swing (number of active

power swings):

electrical and mechanical constraints

 \Box to be set as a number of rotations.

The 2 types of operation may be used independently or at the same time.

ANSI 12 - Overspeed

Detection of machine overspeed, based on the speed calculated by pulse-counting, to detect synchronous generator racing due to loss of synchronism, or for process monitoring, for example.

ANSI 14 - Underspeed

Machine speed monitoring based on the speed calculated by pulse-counting:

■ detection of machine underspeed after starting, for process monitoring, for example

 zero speed data for detection of locked rotor upon starting.

ANSI 50V/51V - Voltage-restrained

overcurrent

Phase-to-phase short-circuit protection, for generators. The current tripping set point is voltage-adjusted in order to be sensitive to faults close to the generator which cause voltage drops and lowers the short-circuit current.

Characteristics

instantaneous or time-delayed tripping

■ definite time (DT), IDMT (choice of 16 standardized

IDMT curves) or customized curve

with or without timer hold

ANSI 21B - Underimpedance

Phase-to-phase short-circuit protection, for generators, based on the calculation of apparent phase-to-phase impedance.

 $Z_{21} = \frac{U_{21}}{I_{2} - I_{1}}$

apparent impedance between phases 1 and 2.

Characteristics

DE 88143

■ circular characteristic centered at origin defined by adjustable set point Zs

Circular tripping characteristic of ANSI 21B protection.

■ time-delayed definite time (DT) tripping when one of the three apparent impedances enters the circular tripping characteristic.

ANSI 50/27 - Inadvertent energization

Checking of generator starting sequence to detect inadvertent energization of generators that are shut down (a generator which is energized when shut down runs like a motor).

Consists of an instantaneous phase overcurrent protection confirmed by a timedelayed undervoltage protection function.

ANSI 64G - 100 % stator earth fault

Protection of generators with earthed neutral against phase-to-earth insulation faults in stator windings. This function may be used to protect generators connected to step-up transformers

100 % stator earth fault is a combination of two protection functions:

■ ANSI 59N/64G1: neutral voltage displacement, protection of 85 % to 90 % of the stator winding, terminal end.

■ ANSI 27TN/64G2: thrid harmonic undervoltage, protection of 10 % to 20 % of the stator winding, neutral point end.

Stator winding of a generator protected 100 % by the combination of ANSI 59N and ANSI 27TN protection functions.

ANSI 27TN/64G2 - Third harmonic undervoltage

Protection of generators with earthed neutral against phase-to-earth insulation faults, by the detection of a reduction of third harmonic residual voltage. Protects the 10 to 20 % of the stator winding, neutral point end, not protected by the

Protects the 10 to 20 % of the stator winding, neutral point end, not protected by the ANSI 59N/64G1 function, neutral voltage displacement.

Characteristics

- choice of 2 tripping principles, according to the sensors used:
- fixed third harmonic undervoltage set point
- adaptive neutral and terminal third harmonic voltage comparator set point
- time-delayed definite time (DT) tripping.

ANSI 26/63 - Thermostat/Buchholz

Protection of transformers against temperature rise and internal faults via logic inputs linked to devices integrated in the transformer.

ANSI 38/49T - Temperature monitoring

Protection that detects abnormal temperature build-up by measuring the temperature inside equipment fitted with sensors:

- transformer: protection of primary and secondary windings
- motor and generator: protection of stator windings and bearings.

Characteristics

- 16 Pt100, NI100 or Ni120 type RTDs
- 2 adjustable independent set points for each RTD (alarm and trip).

Voltage protection functions

ANSI 24 - Overfluxing (V/Hz)

Protection which detects overfluxing of transformer or generator magnetic circuits by calculating the ratio between the greatest phase-to-neutral or phase-tophase voltage divided by the frequency.

Characteristics

 machine coupling to be set up
 definite time (DT) or IDMT time delays (choice of 3 curves).

ANSI 27D - Positive sequence undervoltage

Protection of motors against faulty operation due to insufficient or unbalanced network voltage, and detection of reverse rotation direction.

ANSI 27R - Remanent undervoltage

Protection used to check that remanent voltage sustained by rotating machines has been cleared before allowing the busbar supplying the machines to be re-energized, to avoid electrical and mechanical transients.

ANSI 27 - Undervoltage

Protection of motors against voltage sags or detection of abnormally low network voltage to trigger automatic load shedding or source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

Characteristics

definite time (DT) curve

IDMT curve.

ANSI 59 - Overvoltage

Detection of abnormally high network voltage or checking for sufficient voltage to enable source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

ANSI 59N - Neutral voltage displacement

Detection of insulation faults by measuring residual voltage

ANSI 59N: in isolated neutral systems

■ ANSI 59N/64G1: in stator windings of generators with earthed neutral. Protects the 85 % to 90 % of the winding, terminal end, not protected by the ANSI 27TN/64G2 function, third harmonic undervoltage.

Characteristics

definite time (DT) curve

IDMT curve.

ANSI 47 - Negative sequence overvoltage

Protection against phase unbalance resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage.

FRT (fault ride through) Custom "Grid code" curve

Production installations must stay connected to the grid whenever the voltage is higher than that defined by the "Grid code" curve. The custom curve is defined point by point, with the disconnection time Tc in seconds on the X-axis and the voltage U/Un in pu on the Y-axis.

Frequency protection functions

ANSI 81H - Overfrequency

Detection of abnormally high frequency compared to the rated frequency, to monitor power supply quality.

ANSI 81L - Underfrequency

Detection of abnormally low frequency compared to the rated frequency, to monitor power supply quality.

The protection may be used for overall tripping or load shedding. Protection stability is ensured in the event of the loss of the main source and presence of remanent voltage by a restraint in the event of a continuous decrease of the frequency, which is activated by parameter setting.

ANSI 81R - Rate of change of frequency

Protection function used for fast disconnection of a generator or load shedding control. Based on the calculation of the frequency variation, it is insensitive to transient voltage disturbances and therefore more stable than a phase-shift protection function.

Disconnection

In installations with autonomous production means connected to a utility, the "rate of change of frequency" protection function is used to detect loss of the main system in view of opening the incoming circuit breaker to:

protect the generators from a reconnection without checking synchronization
 avoid supplying loads outside the installation.

Load shedding

The "rate of change of frequency" protection function is used for load shedding in combination with the underfrequency protection to:

either accelerate shedding in the event of a large overload

• or inhibit shedding following a sudden drop in frequency due to a problem that should not be solved by shedding.

Protection Tripping curves

Customized tripping curve Defined point by point using the SFT2841 setting and operating software tool, this curve may be used to solve all special cases involving protection coordination or revamping.

IDMT tripping curves

Current IDM T tripping curves

Multiple IDMT tripping curves are offered, to cover most applications: IEC curves (SIT, VIT/LTI, EIT) IEEE curves (MI, VI, EI)

- usual curves (UIT, RI, IAC).
- Customized tripping curve set using SFT2841 software.

Equation

$$t d(I) = \frac{k}{\left(\frac{I}{Is}\right)^{\alpha} - 1} \times \frac{T}{\beta}$$

Curve type	Coefficient values				
	k	α	β		
Standard inverse / A	0.14	0.02	2.97		
Very inverse / B	13.5	1	1.50		
Long time inverse / B	120	1	13.33		
Extremely inverse / C	80	2	0.808		
Ultra inverse	315.2	2.5	1		

RI curve

Equation:

$$td(l) = \frac{1}{0,339 - 0,236 \left(\frac{l}{ls}\right)^{-1}} \times \frac{T}{3,1706}$$

Equation

Equation

IEEE curves

Curve type	Coefficie	Coefficient values					
	А	Α Β ρ β					
Moderately inverse	0.010	0.023	0.02	0.241			
Very inverse	3.922	0.098	2	0.138			
Extremely inverse	5.64	0.0243	2	0.081			

IAC curves

Curve type	Coeffic	Coefficient values						
	Α	Α Β C D E β						
Inverse	0.208	0.863	0.800	-0.418	0.195	0.297		
Very inverse	0.090	0.795	0.100	-1.288	7.958	0.165		
Extremely inverse	0.004	0.638	0.620	1.787	0.246	0.092		

Protection

Tripping curves

	J	· · · · · · · · · · · · · · · · · · ·
Equation for ANSI 27 - undervoltage	Curve type	Р
With $G = V/f$ or U/f	Α	0.5
$td(G) = \frac{1}{1} T$	В	1
$\frac{(\mathbf{G})^{2}}{(\mathbf{G})^{2}} \left(\frac{\mathbf{G}}{\mathbf{G}}\right)^{\mathbf{p}}$	С	2

Protection Main characteristics

Time delay T or TMS factor

The time delays of current IDMT tripping curves (except for customized and RI curves) may be set as follows:

- time T, operating time at 10 x Is
- TMS factor, factor shown as T/b in the equations on the left.

Timer hold

The adjustable timer hold T1 is used for:

detection of restriking faults (DT curve)

coordination with electromechanical relays (IDMT curve).

Timer hold may be inhibited if necessary.

2 groups of settings

Phase-to-phase and phase-to-earth short-circuit protection

Each unit has 2 groups of settings, A and B, to adapt the settings to suit the network configuration.

The active group of settings (A or B) is set by a logic input or the communication link. **Example of use: normal / backup mode network**

group A for network protection in normal mode, when the network is supplied by the utility

group B for network protection in backup mode, when the network is supplied by a backup generator.

Thermal overload for machines

Each unit has 2 groups of settings to protect equipment that has two operating modes.

Examples of use:

■ transformers: switching of groups of settings by logic input, according to transformer ventilation operating mode, natural or forced ventilation (ONAN or ONAF)

■ motors: switching of groups of settings according to current set point, to take into account the thermal withstand of motors with locked rotors.

Measurement origin

The measurement origin needs to be indicated for each unit of the protection functions that may use measurements of different origins.

The setting links a measurement to a protection unit and allows the protection units to be distributed optimally among the measurements available according to the sensors connected to the analog inputs.

Example: distribution of ANSI 50N/51N function units for transformer earth fault protection:

- 2 units linked to measured I0 for transformer primary protection
- 2 units linked to measured I'0 for transformer secondary protection
- 2 units linked to I0S for protection upstream of the transformer
- 2 units linked to I'0S for protection downstream of the transformer.

Summary table

Characteristics	Protection functions
2 groups of settings A et B	50/51, 50N/51N, 67, 67N/67NC
2 groups of settings, operating modes 1 and 2	49RMS Machine
IEC IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
IEEE IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
Usual IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2
EPATR curves	50N/51N
Voltage IDMT curves	27, 59N, 24
Customized curve	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2
Timer hold	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2

Detection of restriking faults with adjustable timer hold.

Measurement origin: example

Protection Setting ranges

Functions	Settings		Time delays
ANSI 12 - Overspeed			
	100 to 160 % of Wn		1 to 300 s
ANSI 14 - Underspeed			
	10 to 100 % of Wn		1 to 300 s
ANSI 21B - Underimpedance			
Impedance Zs	0.05 to 2.00 Vn/lb		
ANSI 24 - Overfluxing (V/Hz)			
I ripping curve			
Gs set point	1.03 to 2 pu	Definite time	0.1 to 20000 s
		IDMT	0.1 to 1250 s
ANSI 25 - Synchro-check			
Measured voltages	Phase-to-phase	Phase-to-neutral	
Rated primary phase-to-phase voltage			
Unp sync1 (Vnp sync1 = Unp sync1/ $\sqrt{3}$)	220 V to 250 kV	220 V to 250 kV	
Unp sync2 (Vnp sync2 = Unp sync2/ $\sqrt{3}$)	220 V to 250 kV	220 V to 250 kV	
Rated secondary phase-to-phase volta		001/11/0001/	
Uns sync1	90 V to 120 V	90 V to 230 V	
UIIS SYIICZ Synchro-check sotroints	30 V 10 120 V	90 V 10 ∠30 V	
dlls set point	3 % to 30 % of Linp sync1	3 % to 30 % of Vpp sync1	
dfs set point	0.05 to 0.5 Hz	0.05 to 0.5 Hz	
dPhi set point	5 to 80°	5 to 80°	
Us high set point	70 % to 110 % Unp sync1	70 % to 110 % Vnp svnc1	
Us low set point	10 % to 70 % Unp sync1	10 % to 70 % Vnp sync1	
Other settings			
Lead time	0 to 0.5 s	0 to 0.5 s	
Operating modes: no-voltage conditions	Dead1 AND Live2	Dead1 AND Live2	
for which coupling is allowed	Live1 AND Dead2	Live1 AND Dead2	
	Dead1 XOR Dead2	Dead1 XOR Dead2	
	Dead1 OR Dead2	Dead1 OR Dead2	
	Dead1 AND Dead2	Dead1 AND Dead2	
ANSI 27 - Undervoltage (L-L) or (L	-N)		
Tripping curve	Definite time		
Octocict			0.05 to 200 c
Measurement origin	Main channels (LI) or additional channel		0.05 10 300 \$
ANSI 27D - Positive sequence unc		s(0)	
Set point and time delay	15 to 60 % of Linn		0.05 to 300 s
Measurement origin	Main channels (U) or additional channel	s (U')	0.03 10 500 3
ANSI 27R - Remanent undervoltage			
Set point and time delay	5 to 100 % of Unp		0.05 to 300 s
Measurement origin	Main channels (U) or additional channel	ls (U')	
ANSI 27TN/64G2 - Third harmonic	undervoltage		
Vs set point (fixed)	0.2 to 20 % of Vntp		0.05 to 300 s
K set point (adaptive)	0.1 to 0.2		0.05 to 300 s
Positive sequence undervoltage	50 to 100 % of Unp		
Minimum apparent power	1 to 90 % of Sb (Sb = 3.Un.lb)		
ANSI 32P - Directional active over	power		
	1 to 120 % of Sn (1)		0.1 s to 300 s
ANSI 32Q - Directional reactive ov	verpower		
	5 to 120 % of Sn (1)		0.1 s to 300 s
ANSI 37 - Phase undercurrent			
	0.05 to 1 lb		0.05 to 300 s
ANSI 37P - Directional active under	erpower		
	5 to 100 % of Sn ⁽¹⁾		0.1 s to 300 s
ANSI 38/491 - Temperature monito	oring		
Alarm set point IS1	0 °C to 180 °C or 32 °F to 356 °F		
ANSI 40 Field loop (undering and			
Common point: Yo			
	$0.02 \text{ Vn/lb to } 1.4 \text{ Vn/lb} \pm 187.5 \text{ K} \Omega$		0.05 to 300 s
Circle 2: Xc	$0.2 \text{ VI/ID to } 1.4 \text{ VI/ID + } 107.3 \text{ K}\Omega$		0.00 to 300 s
(1) $Sn = \sqrt{3}.In.Unp.$			
5 7 F			

Protection Setting ranges

Encode and	O attice and		The second states			
Functions	Settings		Time delay	5		
ANSI 46 - Negative sequence / unl	balance					
Tripping curve	Definite time					
	IEC: SIT/A, LTI/B, VIT/B, EIT/C					
	IEEE: MI (D), VI (E), EI (F)					
	RI ² (setting constant from 1 to 100)					
Is set point	0.1 to 5 lb	Definite time	0.1 to 300 s			
	0.1 to 5 lb (Schneider Electric)	to 5 lb (Schneider Electric) IDMT 0.1 to 1s				
	0.1 to 1 lb (IEC, IEEE)	1.1 to 1 lb (IEC, IEEE)				
	0.03 to 0.2 lb (Rl ²)					
Measurement origin	Main channels (I) or additional channels	s (l')				
ANSI 47 - Negative sequence over	rvoltage					
Set point and time delay	1 to 50 % of Unp		0.05 to 300 s			
Measurement origin	Main channels (I) or additional channels	s (l')				
ANSI 48/51LR -Locked rotor / exce	essive starting time					
Is set point	0.5 lb to 5 lb	ST starting time	0.5 to 300 s			
		LT and LTS time delays	0.05 to 300 s			
ANSI 49RMS - Thermal overload f	or cables					
Admissible current	1 to 1.73 lb					
Time constant T1	1 to 600 mn					
ANSI 49RMS - Thermal overload f	or capacitors					
Alarm current		1.05 lb to 1.70 lb				
Trip current		1.05 lb to 1.70 lb				
Positioning of the hot tripping curve	Current setting	1.02 x trip current to 2 lb				
	Time setting	1 to 2000 minutes				
	-	(variable range depending on the trip cu	rrent and current se	etting)		
ANSI 49RMS - Thermal overload f	or machines		Mode 1	Mode 2		
Accounting for negative sequence compo	nent	0 - 2.25 - 4.5 - 9				
Time constant	Heating		T1: 1 to 600 mn	T1: 1 to 600 mn		
	Cooling		T2: 5 to 600 mn	T2: 5 to 600 mn		
Alarm and tripping set points (Es1 and Es	2)	0 to 300 % of rated thermal capacity				
Initial thermal capacity used (Es0)		0 to 100 %				
Switching of thermal settings condition		by logic input				
		by Is set point adjustable from 0.25 to 8	b			
Maximum equipment temperature		60 to 200 °C (140 °F to 392 °F)				
Measurement origin	Main channels (I) or additional channels	s (l')				
ANSI 49RMS - Motor thermal over	load					
Measurement origin	11, 12, 13					
Choice of thermal model	2 time constants/generic (see settings a	associated with generic thermal overload)				
Current set point - change of thermal		1 to 10 pu of lb (± 0.1 pu of lb)				
settings	• • • •					
Characteristic times	Operating time accuracy	±2% 0F±1s				
Stator thermal settings		41.000				
lime constants	Motor thermal capacity used (T long)	1 to 600 mn ± 1 mn				
	Stator thermal capacity used (T short	1 to 60 mn ± 0.1 mn				
	Cooling (T cool)	5 to 600 mn ± 1 mn				
Tripping current set point (K)	50 to 173 % of lb (± 1 % of lb)					
Alarm current set point	50 to 173 % of lb (± 1 % of lb)					
Thermal exchange coefficient between the stator and the motor (α)	0 to 1 (± 0.01)					
Current characterizing hot state	0.5 to 1 pu of lb (± 0.1 pu of lb)					
Accounting for ambient temperature	yes / no					
Maximum equipment temperature (Tmax)) 70 to 250 °C (± 1 °C) or 158 to 482 °F (±	1°F)				
Rotor thermal settings						
Locked rotor amperes (IL)	1 to 10 pu of lb (± 0.01 pu of lb)					
Locked rotor torque (LRT)	0.2 to 2 pu of nominal torque (+/- 0.01 pu	u of nominal torque)				
Locked rotor cold limit time (Tc)	1 to 300 s (± 0.1 s)					
Locked rotor hot limit time (Th)	1 to 300 s (± 0.1 s)					

(1) Tripping as of 1.2 ls.

Protection Setting ranges

Functions	Settings		Time delays	
ANSI 40 PMS Transformer there			Thine delays	
ANSI 49RWS - Transformer them				
Choice of thermal model	Dry type transformer			
choice of thermal model	Immersed transformer Generic			
Type of dry-type transformer	Natural ventilation (AN) / Forced ver	tilation (AF)		
Type of oil-filled transformer	Distribution ONAN / Power ONAN /	ONAF / OF / OD		
Alarm set point (θ alarm)	Immersed transformer: 98 to 160 °C	(± 1 °C) or 208 to 320 °F (± 1 °F)		
	Dry-type transformer: 95 to 245 °C (± 1 °C) or 203 to 473 °F (± 1 °F)		
Tripping set point (θ trip)	Immersed transformer: 98 to 160 °C	(± 1 °C) or 208 to 320 °F (± 1 °F)		
	Dry-type transformer: 95 to 245 °C (± 1 °C) or 203 to 473 °F (± 1 °F)			
Time constant for dry-type transfo (τ)	1 to 600 mn ± 1 mn			
Time constant for oil-filled transfo	winding (τ wdg)	1 to 600 mn ± 1 mn		
	oil (τ oil)	5 to 600 mn ± 1 mn		
ANSI 50BF - Breaker failure				
Presence of current	0.2 to 2 In			
Operating time	0.05 s to 3 s			
ANSI 50/27 - Inadvertent energiz	ation			
Is set point	0.05 to 4 In			
Vs set point	10 to 100 % Unp		T1: 0 to 10 s	
			T2: 0 to 10 s	
ANSI 50/51 - Phase overcurrent				
	Tripping time delay	Timer hold		
Tripping curve	Definite time	DT		
	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT		
	RI	DT		
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT		
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT		
	IA: I, VI, EI	DT or IDMT		
	Customized	DT		
Is set point	0.05 to 24 In	Definite time	Inst; 0.05 s to 300 s	
-	0.05 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls	
Timer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s	
	IDMT (IDMT; reset time)		0.5 s to 20 s	
Measurement origin	Main channels (I) or additional chan	nels (l')		
Confirmation	None			
	By negative sequence overvoltage			
	By phase-to-phase undervoltage			
ANSI 50N/51N or 50G/51G - Eart	h fault			
	Tripping time delay	Timer hold		
Tripping curve	Definite time	DT		
FF U	SIT, LTI, VIT, EIT, UIT (1)	DT		
	RI	DT		
	IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT		
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT		
	IAC: I, VI, EI	DT or IDMT		
	EPATR-B, EPATR-C	DT		
	Customized		0.545.4.5	
	U.6 to 5 A	EPAIR-B	0.5 to 1 s	
la0 act point		EPAIR-C	U.1 to 3 s	
ISU SET POINT	0.01 to 15 In0 (min. 0.1 A)		INST; U.U5 S to 300 S	
Timer hold	Definite time (DT: timer hold)	וואנטו	0.1 S to 12.5 S dt 10 ISU	
ninei holu	IDMT (IDMT: reset time)		0.5 s to 20 s	
Measurement origin	10 input, 1'0 input, sum of phase curre	ents I0Σ or sum of phase currents I'0Σ	0.0010200	
(1) Tripping as of 1.2 ls.	p., p., t., t. p. 100 0000			

Protection Setting ranges

Functions	Settings		Time
ANSI 50V/51V - Voltage-restrained overcurre	nt		
ANDI SUVISIV - VOItage-restrained overcurre	Trinning time delay	Timer hold	
Tripping curve	Definite time		
		DT	
	RI	DT	
	IEC SIT/A I TI/B VIT/B EIT/C		
		DT	
ls set point		Definite time	Inst: 0.05 s to 300 s
	0.5 to 2.4 ln		0.1 s to 12.5 s at 10 ls0
	Definite time (DT: timer hold)		Inst: 0.05 s to 300 s
			0.5 a to 20 a
Maggurgment origin	Main channels (I) or additional channel		0.5 \$ 10 20 \$
ANSI 54C Consolitor honk unholonoo		IS (I)	
ANSI 51C - Capacitor bank unbalance		Dofinito timo	0.1 to 200 a
	0.05 A to 2 m	Demnie une	0.1103005
ANSI 59 - Overvoitage (L-L) or (L-N)	$E0 \neq 1E0.0$ of $lar = cr/cr$		0.05 to 200 o
Set point and time delay	Su to 150 % of Unp of Vnp	-1- (1.12)	0.05 10 300 \$
	Main channels (U) or additional channel	eis (U)	
ANSI 59N - Neutral Voltage displacement			
I ripping curve			
		Deficite the	0.051.000
Set point	2 to 80 % of Unp		0.05 to 300 s
	2 to 10 % of Unp		0.1 to 100 s
Measurement origin	Main channels (U), additional channels	s (U [*]) or neutral-point voltage Vnt	
ANSI 64REF - Restricted earth fault differenti			
isu set point	$0.05 \text{ to } 0.8 \text{ in } (\text{In} \ge 20 \text{ A})$		
	0.1 to 0.8 In (In < 20 A)		
Measurement origin	Main channels (I, IU) or additional chan	inels (l', l'0)	
ANSI 66 - Starts per hour			
Permitted number of consecutive cold starts (Nc)	1 to 5	Delay between consecutive starts	1 to 90 mn
Permitted number of consecutive hot starts (Nh)	1 to (Nc - 1)	Delay between stop/start	0 to 90 mn
ANSI 67 - Directional phase overcurrent			
Characteristic angle	30°, 45°, 60°		
	Tripping time delay	Timer hold delay	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
	RI	DT	
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
	Customized	DT	
Is set point	0.1 to 24 In	Definite time	Inst; 0.05 s to 300 s
	0.1 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls0
Timer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
ANSI 67N/67NC - Directional earth fault, proje	ection (type 1)		
Characteristic angle	-45°, 0°, 15°, 30°, 45°, 60°, 90°		
Is0 set point	0.01 to 15 In0 (mini. 0,1 A)	Definite time	Inst; 0.05 s to 300 s
Vs0 set point	2 to 80 % of Unp		
Memory time	10mem time	0; 0.05 s to 300 s	
Management aniain	vumem validity set point	u; 2 to 80 % of Unp	
	io input, i o input		

(1) Tripping as of 1.2 Is

Protection Setting ranges

Functions	5	Settings		Time
ANSI 67N/67	NC - Directional earth fault, acco	ording to 10 vector magnitude (typ	oe 2)	
Characteristic a	angle	-45°, 0°, 15°, 30°, 45°, 60°, 90°		
		Tripping time delay	Timer hold delay	
Tripping curve		Definite time	DT	
		SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
		RI	DT	
		IEC: SIT/A,LTI/B, VIT/B, ETT/C	DI or IDMT	
Is0 set point		0 1 to 15 ln0 (min_0 1 A)	Definite time	Inst: 0.05 s to 300 s
loo ootpollit		0.01 to 1 In0 (min. 0.1 A)	IDMT	0.1 s to 12.5 s at 10 ls0
Vs0 set point		2 to 80 % of Unp		
Timer hold		Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
		IDMT (IDMT; reset time)		0.5 s to 20 s
Measurement of	origin	10 input, I'0 input or sum of phase curre	ents I0S	
ANSI 67N/67	NC type 3 - Directional earth fau	It, according to I0 vector magnitu	de directionalized on a	tripping sector
Tripping sector	start angle	0° to 359°		
Tripping sector	end angle	0° to 359°		
Is0 set point	CSH core balance CT (2 A rating)	0.1 A to 30 A	Definite time	Inst; 0.05 s to 300 s
	1ACT	0.005 to 15 In0 (min. 0.1 A)		
	Core balance CT + ACE990 (range 1) 0.01 to 15 In0 (min. 0.1 A)	0.45.00.0/ afilian	
VSU set point		Calculated V0 (sum of 3 voltages)	2 to 80 % of Unp	
Magguramont	origin		0.6 10 80 % 01 011p	
	Poloslip	to input of 10 input		
Stabilization de		1 to 300 s		
Maximum varia	ition of internal angle	100 to 1000 °		
		0 to 300 ms		
Equal-area crite	erion	010 300 113		
Confirmation de	elav	0 1 to 300 s		
Power swings	ciay	0,110,000,3		
Number of turn	2	1 to 20		
Maximum time	s botwoon 2 turns	1 to 300 a		
		1 10 300 5		
ANSI OTH - C				0.1 to 200 o
Measurement (Main channels (11) or additional channel		0.1 to 300 s
	Inderfrequency	Main channels (0) of additional channel		
Set point and til	me delav	40 to 51 Hz or 50 to 61 Hz		0.1 to 300 s
Measurement	prigin	Main channels (U) or additional channel	els (U')	0.1100000
ANSI 81R - F	Rate of change of frequency		(-)	
	0 1 9	0.1 to 10 Hz/s		0.15 to 300 s
ANSI 87M - M	Machine différential			
lds set point		0.05 to 0.5 In (In ≥ 20 A)		
		0.1 to 0.5 ln (ln < 20 A)		
ANSI 87T - T	ransformer differential			
High set point		3 to 18 ln1		
Percentage-b	ased curve			
lds set point		30 to 100 % In1		
Slope Id/It		15 to 50 %		
Slope Id/It2		without, 50 to 100 %		
Slope change p	point	1 to 18 ln1		
Current threeho	and	1 to 10 %		
	514	0 to 300 s		
Restraint on C		010 300 \$		
Activity		On / Off		
Retenues sur	taux d'harmoniques	Classic	Self-adapting	
Choice of restra	aint	Classic	Self-adapting	
High set point		On	On / Off	
Harmonic 2 per	rcentage set point	off, 5 to 40 %		
Harmonic 2 res	traint	per phase / total		
Harmonic 5 per	centage set point	off, 5 to 40 %		
Harmonic 5 res	traint	per phase / total		

Control and monitoring Description

Sepam performs all the control and monitoring functions required for electrical network operation:

■ the main control and monitoring functions are predefined and fit the most frequent cases of use. They are ready to use and are implemented by simple parameter setting after the necessary logic inputs / outputs are assigned.

 the predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options:
 logic equation editor, to adapt and complete the predefined control and monitoring functions

□ creation of personalized messages for local annunciation

□ creation of personalized mimic diagrams corresponding to the controlled devices □ customization of the control matrix by changing the assignment of output relays,

LEDs and annunciation messages

■ with the Logipam option, Sepam can provide the most varied control and monitoring functions, programmed using the SFT2885 programming software that implements the Logipam ladder language.

Operating principle

The processing of each control and monitoring function may be broken down into 3 phases:

- acquisition of input data:
- □ results of protection function processing

□ external logic data, connected to the logic inputs of an optional MES120 input / output module

- Iocal control orders transmitted by the mimic-based UMI
- □ remote control orders (TC) received via the Modbus communication link
- actual processing of the control and monitoring function
- utilization of the processing results:
- activation of outputs to control a device
- □ information sent to the facility manager:
- by message and/or LED on the Sepam display and SFT2841 software
- by remote indication (TS) via the Modbus communication link
- by real-time indications on device status on the animated mimic diagram.

Logic inputs and outputs

The number of Sepam inputs / outputs must be adapted to fit the control and monitoring functions used.

The 5 outputs included in the Sepam series 80 base unit may be extended by adding 1, 2 or 3 MES120 modules with 14 logic inputs and 6 output relays.

After the number of MES120 modules required for the needs of an application is set, the logic inputs are assigned to functions. The functions are chosen from a list which covers the whole range of possible uses. The functions are adapted to meet needs within the limits of the logic inputs available. The inputs may also be inverted for undervoltage type operation.

A default input / output assignment is proposed for the most frequent uses.

Maximum Sepam series 80 configuration with 3 MES120 modules: 42 inputs and 23 outputs.

Logic inputs and outputs GOOSE

GOOSE logic inputs are used with the IEC61850 communication protocol. The GOOSE inputs are divided between the 2 GSE virtual modules with 16 logic inputs.

Control and monitoring Description of predefined functions

Each Sepam contains the appropriate predefined control and monitoring functions for the chosen application.

ANSI 94/69 - Circuit breaker/contactor control

Control of breaking devices equipped with different types of closing and tripping coils: circuit breakers with shunt or undervoltage trip coils

- latching contactors with shunt trip coils
- contactors with latched orders

The function processes all breaking device closing and tripping conditions, based on:

- protection functions
- breaking device status data
- remote control orders

specific control functions for each application (e.g. recloser, synchro-check). The function also inhibits breaking device closing, according to the operating conditions.

Automatic transfer (AT)

This function transfers busbar supply from one source to another. It concerns substations with two incomers, with or without coupling.

The function carries out:

automatic transfer with a break if there is a loss of voltage or a fault
 manual transfer and return to normal operation without a break, with or without synchro-check

- control of the coupling circuit breaker (optional)
- selection of the normal operating mode

■ the necessary logic to ensure that at the end of the sequence, only 1 circuit breaker out of 2 or 2 out of 3 are closed.

The function is distributed between the two Sepam units protecting the two incomers. The synchro-check function (ANSI 25) is carried out by the optional MCS025 module, in conjunction with one of the two Sepam units.

Load shedding - Automatic restart

Automatic load regulation on electrical networks by load shedding followed by automatic restarting of motors connected to the network

Load shedding

The breaking device opens to stop motors in case of:

detection of a network voltage sag by the positive sequence undervoltage

- protection function ANSI 27D
- receipt of a load shedding order on a logic input.

Automatic restart

The motors disconnected as a result of the network voltage sag are automatically restarted:

■ after the return of network voltage is detected by the positive sequence undervoltage protection function ANSI 27D

■ and a time delay has run out, so as to stagger motor restarts.

De-excitation

Interruption of a synchronous generator's excitation supply and tripping of the generator breaking device in case of:

- detection of an internal generator fault
- detection of an excitation system fault
- receipt of a de-excitation order on a logic input or via the communication link.

Automatic transfer with synchro-check controlled by Sepam series 80.

Control and monitoring Description of predefined functions

Genset shutdown

Shutdown of the driving machine, tripping of the breaking device and interruption of the generator excitation supply in case of:

detection of an internal generator fault

■ receipt of a genset shutdown order on a logic input or via the communication link.

Control of capacitor banks

This function controls 1 to 4 switches for capacitor steps, taking into account all the closing and tripping conditions determined by the ANSI 94/69 function for control of the switchgear.

Manual or automatic control, controlled by an external reactive-energy regulator.

ANSI 68 - Logic discrimination

This function provides:

■ perfect tripping discrimination with phase-to-phase and phase-to-earth shortcircuits, on all types of network

■ faster tripping of the breakers closest to the source (solving the drawback of conventional time discrimination).

Each Sepam is capable of:

■ sending a blocking input when a fault is detected by the phase overcurrent and earth fault protection functions, which may or may not be directional (ANSI 50/51, 50N/51N, 67 or 67N/67NC)

■ and receiving blocking inputs which inhibit protection tripping. A saving mechanism ensures continued operation of the protection in the event of a blocking link failure.

ANSI 86 - Latching / acknowledgement

The tripping outputs for all the protection functions and all the logic inputs Ix can be latched individually. The latched information is saved in the event of an auxiliary power failure.

(The logic outputs cannot be latched.)

All the latched data may be acknowledged:

- locally, with the key
- remotely via a logic input
- or via the communication link.

The Latching/acknowledgement function, when combined with the circuit breaker/ contactor control function, can be used to create the ANSI 86 "Lockout relay" function.

Output relay testing

Each output relay is activated for 5 seconds, to make it simpler to check output connections and connected switchgear operation.

Control and monitoring Description of predefined functions

Local indications on the Sepam front panel.

SFT2841: alarm history.

ANSI 30 - Local annunciation

LED indication

■ 2 LEDs, on the front and back of Sepam, indicate the unit operating status, and are visible when a Sepam without a UMI is mounted inside the LV compartment, with access to connectors:

□ green LED ON: Sepam on

□ red "key" LED: Sepam unavailable (initialization phase or detection of an internal failure)

■ 9 yellow LEDs on the Sepam front panel:

□ pre-assigned and identified by standard removable labels

□ the SFT2841 software tool may be used to assign LEDs and personalize labels.

Local annunciation on Sepam display

Events and alarms may be indicated locally on Sepam's advanced UMI or on the mimic-based UMI by:

messages on the display unit, available in 2 languages:

English, factory-set messages, not modifiable

□ local language, according to the version delivered (the language version is chosen when Sepam is set up)

■ the lighting up of one of the 9 yellow LEDs, according to the LED assignment, which is set using SFT2841.

Alarm processing

■ when an alarm appears, the related message replaces the current display and the related LED goes on.

The number and type of messages depend on the type of Sepam. The messages are linked to Sepam functions and may be viewed on the front-panel display and in the SFT2841 "Alarms" screen.

- to clear the message from the display, press the key
- after the fault has disappeared, press the key: the light goes off and Sepam is reset

■ the list of alarm messages remains accessible (▲ key) and may be cleared by pressing the key from "Alarms" screen, but can not be cleared from "Alarm history" screen.

Control and monitoring Description of predefined functions

Local control using the mimic-based UMI

Local control using the mimic-based UMI Sepam control mode

A key-switch on the mimic-based UMI is used to select the Sepam control mode. Three modes are available : Remote, Local or Test.

- In Remote mode:
- remote control orders are taken into account
- local control orders are disabled, with the exception of the circuit-breaker open order
- In Local mode:

remote control orders are disabled, with the exception of the circuit-breaker open order

Iocal control orders are enabled.

Test mode should be selected for tests on equipment, e.g. during preventivemaintenance operations:

- all functions enabled in Local mode are available in Test mode
- no remote indications (TS) are sent via the communication link.

The Logipam programming software can be used to customize control-mode processing.

View device status on the animated mimic diagram

For safe local control of devices, all information required by operators can be displayed simultaneously on the mimic-based UMI:

■ single-line diagram of the equipment controlled by Sepam, with an animated, graphic indication of device status in real time

the desired current, voltage and power measurements.

The local-control mimic diagram can be customized by adapting one of the supplied, predefined diagrams or by creating a diagram from scratch.

Local control of devices

All the devices for which opening and closing are controlled by Sepam can be controlled locally using the mimic-based UMI.

The most common interlock conditions can be defined be logic equations or by Logipam.

The sure and simple operating procedure is the following:

■ select the device to be controlled by moving the selection window using the keys or Sepam checks whether local control of the selected device is authorized

and informs the operator (selection window with a solid line) \blacksquare selection confirmation for the device to be controlled by pressing the key 2 (the selection window flashes)

device control by pressing:

key : open order

□ or key ①: close order.

Control and monitoring Adaptation of predefined functions using the SFT2841 software

The predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options: logic equation editor, to adapt and complete the predefined control and monitoring functions

■ creation of personalized messages for local annunciation

■ creation of custom mimic diagrams corresponding to the controlled devices

customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages.

Operating principle

SFT2841: logic equation editor.

Logic equation editor

The logic equation editor included in the SFT2841 software can be used to:

- complete protection function processing:
 additional interlocking
- □ conditional inhibition/validation of functions
- □etc

■ adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

Note that the use of the logic equation editor excludes the possibility of using the Logipam programming software.

A logic equation is created by grouping logic input data received from:

- protection functions
- Iogic inputs
- local control orders transmitted by the mimic-based UMI
- remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message via the control matrix
- transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit breaking device closing
- used to inhibit or reset a protection function.

Control and monitoring Adaptation of predefined functions using the SFT2841 software

Personalized alarm and operating messages

The alarm and operating messages may be personalized using the SFT2841 software tool.

The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

on the Sepam display

■ in the SFT2841 "Alarms" and "Alarm History" screens.

Local-control mimic diagram

The mimic-diagram editor in the SFT2841 software can be used to create a singleline diagram corresponding exactly to the equipment controlled by Sepam. Two procedures are available:

■ rework a diagram taken from the library of standard diagrams in the SFT2841 software

■ creation of an original diagram : graphic creation of the single-line diagram, positioning of symbols for the animated devices, insertion of measurements, text, etc.

Creation of a customized mimic diagram is made easy:

- library of predefined symbols: circuit breakers, earthing switch, etc.
- creation of personalized symbols.

SFT2841: mimic-diagram editor.

SFT2841: control matrix

Control matrix

- The control matrix is a simple way to assign data from:
- protection functions
- control and monitoring functions
- logic inputs
- logic equations or Logipam program to the following output data:
- output relays
- 9 LEDs on the front panel of Sepam
- messages for local annunciation
- triggering of disturbance recording.

Control and monitoring Customized functions using Logipam

The SFT2885 programming software (Logipam) can be used to enhance Sepam by programming specific control and monitoring functions.

Only the Sepam series 80 with a cartridge containing the Logipam SFT080 option can run the control and monitoring functions programmed by Logipam.

Operating principle

SFT2885: Logipam programming software.

Logipam programming software

The Logipam SFT2885 programming software can be used to:

adapt predefined control and monitoring functions

■ program specific control and monitoring functions, either to replace the predefined versions or to create completely new functions, to provide all the functions required by the application.

It is made up of:

■ a ladder-language program editor used to address all Sepam data and to program complex control functions

■ a simulator for complete program debugging

a code generator to run the program on Sepam.

The ladder-language program and the data used can be documented and a complete file can be printed.

Offering more possibilities than the logic-equation editor, Logipam can be used to create the following functions :

- specific automatic transfer functions
- motor starting sequences.

It is not possible to combine the functions programmed by Logipam with functions adapted by the logic-equation editor in a given Sepam.

The Logipam program uses the input data from:

- protection functions
- logic inputs
- remote control orders
- local control orders transmitted by the mimic-based UMI.

The result of Logipam processing may then be:

- assigned to a logic output, directly or via the control matrix
- assigned to a LED or message via the control matrix
- transmitted by the communication link, as a new remote indication
- used by the predefined control and monitoring functions
- used to inhibit or reset a protection function.

Base unit Presentation

Base units are defined according to the following characteristics:

- type of User-Machine Interface (UMI)
- working language
- type of base unit connector
- type of current sensor connector
- type of voltage sensor connector.

Sepam series 80 base unit with integrated advanced UMI.

Sepam series 80 base unit with mimic-based UMI.

Customized Chinese advanced UMI.

User-Machine Interface

Two types of User-Machine Interfaces (UMI) are available for Sepam series 80 base units:

- mimic-based UMI
- advanced UMI.

The advanced UMI can be integrated in the base unit or installed remotely on the cubicle. Integrated and remote advanced UMIs offer the same functions.

- A Sepam series 80 with a remote advanced UMI is made up of:
- a bare base unit without any UMI, for mounting inside the LV compartment
- a remote advanced UMI (DSM303)

□ for flush mounting on the front panel of the cubicle in the location most suitable for the facility manager

□ for connection to the Sepam base unit using a prefabricated CCA77x cord. The characteristics of the remote advanced UMI module (DSM303) are presented on page 221.

Comprehensive data for facility managers

All the data required for local equipment operation may be displayed on demand: display of all measurement and diagnosis data in numerical format with units and/ or in bar graphs

■ display of operating and alarm messages, with alarm acknowledgment and Sepam resetting

display of the list of activated protection functions and the main settings of major protection functions

adaptation of activated protection function set points or time delays in response to new operating constraints

- display of Sepam and remote module versions
- output testing and logic input status display
- display of Logipam data: status of variables, timers
- entry of 2 passwords to protect parameter and protection settings.

Local control of devices using the mimic-based UMI

The mimic-based UMI provides the same functions as the advanced UMI as well as local control of devices:

- selection of the Sepam control mode
- view device status on the animated mimic diagram
- local opening and closing of all the devices controlled by Sepam.

Ergonomic data presentation

- keypad keys identified by pictograms for intuitive navigation
- menu-guided access to data
- graphical LCD screen to display any character or symbol

excellent display quality under all lighting conditions : automatic contrast setting and backlit screen (user activated).

Working language

All the texts and messages displayed on the advanced UMI or on the mimic-based UMI are available in 2 languages:

- English, the default working language
- and a second language, which may be
- French
- □ Spanish
- □ another "local" language.

Please contact us regarding local language customization.

Connection of Sepam to the parameter setting tool

The SFT2841 parameter setting tool is required for Sepam protection and parameter setting.

A PC containing the SFT2841 software is connected to the RS 232 communication port on the front of the unit or through the communication network.

Base unit

Presentation

	Selecti	on guide	
Base unit	With remote advanced UMI	With integrated advanced UMI	With mimic-based UMI
Functions			
Local indication			
Metering and diagnosis data	•		•
Alarms and operating messages	•	•	•
List of activated protection functions	•	•	•
Main protection settings			
Version of Sepam and remote modules	•	•	•
Status of logic inputs	•	•	
Logipam data Switchgear status on the animated	•	•	•
Phasor diagram of currents or voltages Local control			•
Alarm acknowledgement	•	•	
Sepam reset			•
Output testing	•	•	•
Selection of Sepam control mode			
Device open/close order			
Characteristics			
Screen			
Size	128 x 64 pixels	128 x 64 pixels	128 x 240 pixels
Automatic contrast setting	•	•	•
Backlit screen	•	•	
Keypad			
Number of keys	9	9	14
Control-mode switch			Remote / Local / Test
LEDs			
Sepam operating status	 base unit: 2 LEDs visible on back remote advanced UMI: 2 LEDs visible on front 	2 LEDs, visible from front and back	2 LEDs, visible from front and back
Indication LEDs	9 LEDs on remote advanced UMI	9 LEDs on front	9 LEDs on front
Mounting			
	 bare base unit, mounted at the back of the compartment using the AMT880 mounting plate DSM303 remote advanced UMI module , flush mounted on the front of the cubicle and connected to the base unit with the CCA77x prefabricated cord 	Flush mounted on front of cubicle	Flush mounted on front of cubicle

Base unit Presentation

Sepam series 80 memory cartridge and backup battery.

Hardware characteristics

Standard removable memory cartridge

- The cartridge contains all the Sepam characteristics:
- all Sepam protection and parameter settings
- all the metering and protection functions required for the application
- predefined control functions
- functions customized by control matrix or logic equations
- functions programmed by Logipam (optional)
- personalized local-control mimic diagram
- accumulated energies and switchgear diagnosis values
- working languages, customized and otherwise.
- It may be made tamper-proof by lead sealing.

It is removable and easy to access on the front panel of Sepam to reduce maintenance time.

- If a base unit fails, simply:
- switch off Sepam and unplug connectors
- retrieve original cartridge
- replace the faulty base unit by a spare base unit (without cartridge)
- load the original cartridge into the new base unit
- plug in the connectors and switch Sepam on again:

Sepam is operational, with all its standard and customized functions, without requiring any reloading of protection and parameter settings.

Extended removable memory cartridge

It offers the same functions as the standard cartridge with extended storage capacity.

Backup battery

Standard lithium battery, 1/2 AA format, 3.6 Volts.

It allows the following data to be stored in the event of an auxiliary power outage:

- time-tagged event tables
- disturbance recording data
- peak demands, tripping context, etc
- date and time.

The battery presence and charge are monitored by Sepam.

The main data (e.g. protection and parameter settings) are saved in the event of an auxiliary power outage, regardless of the state of the battery.

Auxiliary power supply

DC power supply voltage from 24 to 250 V DC.

Five relay outputs

The 5 relay outputs O1 to O5 on the base unit must be connected to connector A. Each output can be assigned to a predetermined function using the SFT2841 software.

O1 to O4 are 4 control outputs with one NO contact, used by default for the switchgear control function:

- O1: switchgear tripping
- O2: switchgear closing inhibition
- O3: switchgear closing
- O4: available.

O5 is an indication output used by default for the watchdog function and has two contacts, one NC and one NO.

Base unit Presentation

Main connector and voltage and residual current input

connector

- A choice of 2 types of removable, screw-lockable 20-pin connectors:
- CCA620 screw-type connectors
- or CCA622 ring lug connectors.
- The presence of the connector is monitored.

Connector for additional voltage inputs (Sepam B83)

CCT640 connector, removable and screw-lockable. The presence of the CCT640 connector is monitored.

Phase current input connectors

Current sensors connected to removable, screw-lockable connectors according to type of sensors used:

CCA630 or CCA634 connector for 1 A or 5 A current transformers

■ or CCA671 connector for LPCT sensors.

The presence of these connectors is monitored.

Mounting accessories

Spring clips

8 spring clips are supplied with the base unit to flush-mount Sepam in mounting plates 1.5 to 6 mm thick. Simple, tool-free installation.

AMT880 mounting plate

It is used to mount a Sepam without UMI inside the compartment with access to connectors on the rear panel.

Mounting used with remote advanced UMI module (DSM303).

AMT820 blanking plate

It fills in the space left when a standard model Sepam 2000 is replaced by a Sepam series 80.

Spare base units

The following spares are available to replace faulty base units:

- base units with or without UMI, without cartridge or connectors
- all types of standard cartridges, with or without the Logipam option.

AMT852 lead sealing accessory

The AMT852 lead sealing accessory can be used to prevent unauthorized modification of the settings of Sepam series 80 units with integrated advanced UMIs.

- The accessory includes:
- a lead-sealable cover plate

■ the screws required to secure the cover plate to the integrated advanced UMI of the Sepam unit.

Note: the AMT852 lead sealing accessory can secured only to the integrated advanced UMIs of Sepam series 80 units Contact us to determine the serial number of the device on wich you can fit the lead sealing accessory.

Base unit Description

DE88156

- 1 Green LED: Sepam on.
- 2 Red LED: Sepam unavailable.
- 3 9 yellow indication LEDs.
- 4 Label identifying the indication LEDs.
- 5 Graphical LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- **10** Acknowledgement and clearing of alarms (or move cursor up).
- 11 LED test (or move cursor down).
- 12 Display and adaptation of activated protection
- settings.
- 13 Display of Sepam and Logipam data.
- 14 Entry of 2 passwords.
- 15 RS 232 PC connection port.
- 16 Backup battery.
- 17 Memory cartridge.
- 18 Door.

Front panel with advanced UMI |2 4 5 6 (*1*,...) 11 = 165A RMS 7 (X, 2 = 166A RMS \oslash I3 = 167А кмs 8 • reset Ø 18 15 14 13 12 11 10 9 17 16

Front panel with mimic-based UMI

E60682 2 . 3 • 2 .4 Sepam G82 Local 5 6 G \oslash .7 8 11 = 175 A U21= 6.61 kV 9 1 81 MW O = 860 kya10 Ø .11 K 12 15 19 17 21 25 24 23 22 20 18 16 14 13

- 1 Graphical LCD screen.
- 2 Green LED: Sepam on.
- 3 Red LED: Sepam unavailable.
- 4 Local close order.
- 5 Local open order.
- 6 Label identifying the indication LEDs.
- 7 7 yellow indication LEDs, 1 red LED (I), 1 green LED (o).
- 8 Move cursor up.
- 9 Confirm data entry.
- 10 Move cursor down.
- 11 RS 232 PC connection port.
- 12 Transparent door.
- 13 Entry of 2 passwords.
- 14 Mimic-based UMI display.
- 15 Sepam reset.
- **16** Display of alarm messages.
- 17 Acknowledgement and clearing of alarms.
- 18 Display of switchgear and network diagnosis data (or LED test).
- **19** Display and adaptation of activated protection settings.
- **20** Display of measurements.
- 21 Display of Sepam and Logipam data.
- 22 Three-position key switch to select Sepam control mode.
- 23 Backup battery.
- 24 Memory cartridge.
- 25 Door.

Base unit

Description

- **2** 8 fixing points for 4 spring clips.
- 3 Red LED: Sepam unavailable.
- 4 Green LED: Sepam on.
- 5 Gasket.

(A) 20-pin connector for:

- 24 V DC to 250 V DC auxiliary supply
 5 relay outputs.
- (B1) Connector for 3 phase current I1, I2, I3 inputs.
- B2 Sepam T87, M87, M88, G87, G88: connector for 3 phase current I'1, I'2, I'3 inputs ■ Sepam B83: connector for
 - □ 3 phase voltage V'1, V'2, V'3 inputs □ 1 residual voltage V'0 input.
 - Sepam C86: connector for capacitor unbalance current inputs.

(C1) Modbus communication port 1.

- C2 Modbus communication port 2.
- (D1) Remote module connection port 1.
- (D2) Remote module connection port 2.
- (E)20-pin connector for:
 - phase voltage V1, V2, V3 inputs
 - 1 residual voltage V0 input.

■ 2 residual current I0, I'0 inputs.

(F) Communication port 3 for ACE850 modules only.

(H1) Connector for 1st MES120 input/output module.

- (H2) Connector for 2nd MES120 input/output module.
- (H3) Connector for 3rd MES120 input/output module.
- + Functional earth.

CAUTION

HAZARD OF DEFECTIVE COMMUNICATION ■ Never use both communication ports (C2) and (F) on

- a Sepam series 80 at the same time.
- The only communication ports that can be used simultaneously on a Sepam series 80 unit are
- ports (C_1) and (C_2) or ports (C_1) and (F). Failure to follow this instruction can cause equipement damage.

178 Schneider

Base unit Technical characteristics

		Base unit with	advanced UMI	Base unit with	n mimic-based UMI
Minimum weight (base unit wit	hout MES120)	2.4 kg (5.29 lb)		3.0 kg (6.61 lb)	
Maximum weight (base unit w	ith 3 MES120)	4.0 kg (8.82 lb)		4.6 kg (10.1 lb)	
Sensor inputs					
Phase current inputs		1 A or 5 A CT			
Input impedance		< 0.02 Ω			
Consumption		< 0.02 VA (1 A CT))		
		< 0.5 VA (5ACT)			
1 second overload		4 III 100 In			
Voltage inputs		Phase		Residual	
Input impedance		> 100 k 0		> 100 k 0	
Consommation		< 0.015 VA (100 V	VT)	< 0.015 VA (100	V VT)
Continuous thermal withstand		240 V	/	240 V	,
1-second overload		480 V		480 V	
Isolation of inputs in relation to other isolated groups		Enhanced		Enhanced	
Relay outputs					
Control relay outputs O	101, O201 and O301				
Voltage	DC	24/48 V DC	127 V DC	220 V DC	
-	AC (47.5 to 63 Hz)				100 to 240 V AC
Continuous current		8 A	8A	8A	8 A
Breaking capacity	Resistive load	8A/4A	0.7 A	0.3 A	
	Load L/R < 20 ms	6A/2A	0.5 A	0.2 A	
	Load L/R < 40 ms	4A/1A	0.2 A	0.1 A	
	Resistive load				8 A
	Load p.f. > 0.3				5A
Making capacity		< 15 A for 200 ms			
other isolated groups					
Annunciation relay out	put 05, 0102 to 0106, 02	202 to O206 and O302	to 0306	0001/00	
voitage		24/48 V DC	127 V DC	220 V DC	100 to 240 \/ AC
Continuous current	AU (47.3 10 03 HZ)	2 ^	2 ^	2 /	2 A
Breaking capacity	$\log 1/R < 20$ ms	2A/1A	0.5.4	0 15 4	28
Dicating capacity	Load p.f. > 0.3	20/10	0.07	0.10A	1.A
Isolation of outputs in relation	to	Enhanced			
Power supply					
Voltage		24 to 250 V DC	_20 % /	+10 %	
Maximum consumption		< 16 W	-20 %7	10 /0	
Inrush current		< 10 A 10 ms			
Acceptable ripple content		12 %			
Acceptable momentary outage	es	100 ms			
Battery					
Format		1/2 ΔΔ lithium 3.6	V		
Service life	· · · · · · · · · · · · · · · · · · ·	10 years Sename	neraized		
		Standard cartrido	e: 3 years minimum two	ically 6 years Senam no	t energized

Base unit Environmental characteristics

Electromenatie commetibility	Ctondovd		Value
Electromagnetic compatibility	Standard	Level / Class	value
Emission tests			
Disturbing field emission	IEC 60255-25		
	EN 55022	A	
Conducted disturbance emission	IEC 60255-25	•	
Immunity tooto Badiated disturbances	EN 55022	А	
Inimumity lesis – Radialed disturbances			
immunity to radiated fields	IEC 60255-22-3		10 V/m; 80 MHz - 1 GHz
	IEC 61000-4-3	111	10 V/III, 00 MIDZ - 2 GHZ 30 V/m pop modulated: 800MHz - 2GHz ⁽¹⁾
	ANSI C37 00 2 (2004)		20 V/m 80 MHz 1 GHz
Electrostatic discharge	IEC 61000-4-2 ⁽¹⁾	IV	15 kV air : 8 kV contact
	IEC 60255-22-2		8 kV air: 6 kV contact
	ANSI C37.90.3		8 kV air: 4 kV contact
Immunity to magnetic fields at network frequency (1)	IEC 61000-4-8	4	30 A/m (continuous) - 300 A/m (1-3 s)
Immunity to pulsed magnetic fields (1)	IEC 61000-4-9	IV	600 A/m
Immunity to paroof inaginate instact	IEC 61000-4-10	5	100 A/m
Immunity to magnetic fields with damped oscinating waves	120 01000-4-10	5	100 Am
			10.)(
Electrical fast transients/burst	IEC 60255-22-0	A and B	10 V 4 k\/: 2 5 kHz / 2 k\/: 5 kHz
	IEC 61000-4-4	IV	4 kV: 2.5 kHz
	ANSI C37 90 1	1 V	4 kV: 2.5 kHz
1 MHz damped oscillating wave	IEC 60255-22-1		2.5 kV CM: 1 kV DM
	ANSI C37.90.1		2.5 kV CM: 2.5 kV DM
100 kHz damped sine wave	IEC 61000-4-12	111	2 kV CM
··· ·· ···		IV ⁽¹⁾	4 kVCM ; 2,5 kV DM
10Mhz, 50Mhz damped oscillating wave	CEI 61000-4-12		2,5KV CM; 2,5KV DM
	Shell DEP 33.64.10.17		
Slow damped oscillating wave (100 kHz to 1 MHz)	IEC 61000-4-18		2 kV CM
Fast damped oscillating wave (3 MHz, 10 MHz, 30 MHz)	IEC 61000-4-18		
Surges	IEC 61000-4-5	III	2 kV CM; 1 kV DM
	GOST R 50746-2000 ⁽¹⁾	IV	200 A
Immunity to conducted disturbances in common mode from	IEC 61000-4-16	111	
0112 10 130 KHZ			
Voltage interruptions	IEC 60255-11		100 % during 100 ms
Voltage interruptions	IEC 60255-11		100 % during 100 ms
Voltage interruptions Mechanical robustness	IEC 60255-11 Standard	Level / Class	100 % during 100 ms Value
Voltage interruptions Mechanical robustness In operation	IEC 60255-11 Standard	Level / Class	100 % during 100 ms Value
Voltage interruptions Mechanical robustness In operation Vibrations	IEC 60255-11 Standard IEC 60255-21-1	Level / Class	100 % during 100 ms Value
Voltage interruptions Mechanical robustness In operation Vibrations	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60069-2-6	Level / Class	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm
Voltage interruptions Mechanical robustness In operation Vibrations	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60055-21-2	Level / Class 2 Fc 2M1	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Cp / 11 mc
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Eattbuckee	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 600255-21-2 IEC 60255-21-2	Level / Class 2 Fc 2M1 2 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes)
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-3	Level / Class 2 Fc 2M1 2 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes)
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-3	Level / Class 2 Fc 2M1 2 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes)
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-3 IEC 60255-21-1	Level / Class 2 Fc 2M1 2 2 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn: 10 Hz - 150 Hz
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-3 IEC 60255-21-1 IEC 60255-21-2	Level / Class 2 Fc 2M1 2 2 2 2 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-3 IEC 60255-21-1 IEC 60255-21-2 IEC 60255-21-2	Level / Class 2 Fc 2M1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Climatic withstand	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-3 IEC 60255-21-1 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 Standard	Level / Class	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-3 IEC 60255-21-1 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 Standard	Level / Class 2 Fc 2M1 2 2 2 2 2 2 Level / Class	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-3 IEC 60255-21-1 IEC 60255-21-2 IEC 602	Level / Class 2 Fc 2M1 2 2 2 2 2 Level / Class	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value 25 °C
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-1 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-2	Level / Class 2 Fc 2M1 2 2 2 2 2 2 Level / Class Ad Bd	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78	Level / Class 2 Fc 2M1 2 2 2 2 2 2 Level / Class Ad Bd Cab	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days: 93 % RH : 40 °C
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Climatic withstand During operation Exposure to cold Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-78 IEC 60068-2-78 IEC 60068-2-52	Level / Class 2 Fc 2M1 2 2 2 2 2 2 Level / Class Ad Bd Cab Kb/2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH ; 40 °C 6 days
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-78 IEC 60068-2-78 IEC 60068-2-60	Level / Class 2 Fc 2M1 2 2 2 2 2 2 Level / Class Ad Bd Cab Kb/2 C	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH ; 40 °C 6 days 21 Days, 75% RH, 25°C, 500, 10-9 vol/vol
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-12 IEC 60068-2-1 IEC 60068-2-78 IEC 60068-2-52 IEC 60068-2-60	Level / Class 2 Fc 2M1 2 2 2 2 2 2 Level / Class Ad Bd Cab Kb/2 C	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH ; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H,S; 1000.10-9 vol/vol SO ²
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-78 IEC 60068-2-60 IEC 60068-2-60	Level / Class 2 Fc 2M1 2 2 2 2 2 2 Level / Class Ad Bd Cab Kb/2 C Method 3	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C,
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-78 IEC 60068-2-60 IEC 60068-2-60	Level / Class 2 Fc 2M1 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = \pm 1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-5 H ² S; 200+/-20 SO ² ; 200+/-20 NO ² ,
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-12 IEC 60068-2-12 IEC 60068-2-12 IEC 60068-2-22 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-60	Level / Class 2 Fc 2M1 2 2 2 2 2 Level / Class Ad Bd Cab Kb/2 C Method 3	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol NO ² 21 Days, 75% RH, 25°C, 10+/-5 H ² S; 200+/-20 SO ² ; 200+/-20 NO ² , 10+/-5 Cl ² (10-9 vol/vol)
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-52 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-60	Level / Class 2 Fc 2M1 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = ±1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH ; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-5 H ² S; 200+/-20 NO ² ; 200+/-20 NO ² , 10+/-5 Cl ² (10-9 vol/vol) 42 days, 75% RH, 30°C,
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-78 IEC 60068-2-52 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-60	Level / Class 2 Fc 2M1 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = \pm 1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H _z S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H _z S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-50 NO ² ; 200+/-20 NO ² , 10+/-5 Cl ² (10-9 vol/vol) 42 days, 75% RH, 30°C, 100+/-20 SO ² ; 200+/-50 SO ² ; 200+/-50 NO ² ; 200+/-50 SO ² ; 200+/-50 SO ² ; 200+/-50 NO ² ; 200+/-50 SO ² ; 200+/-50 S
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-52 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-60	Level / Class 2 Fc 2M1 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = \pm 1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-5 C, 10+/-5 CP; (10-9 vol/vol SO ² ; 200+/-20 NO ² , 10+/-5 CP; (10-9 vol/vol) 42 days, 75% RH, 30°C, 100+/-20 H ² S; 200+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² ,
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-78 IEC 60068-2-78 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-60	Level / Class 2 Fc 2M1 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = \pm 1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-5 Cl ² (10-9 vol/vol SO ² ; 200+/-20 NO ² , 10+/-5 H ² S; 200+/-20 SO ² ; 200+/-50 NO ² , 100+/-50 Fl ² (10-9 vol/vol) 42 days, 75% RH, 30°C, 100+/-20 H ² S; 200+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 NO ² , 20
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-14 IEC 60068-2-14 IEC 60068-2-14	Level / Class 2 Fc 2M1 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = \pm 1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-5 H ² S; 200+/-20 SO ² ; 200+/-20 NO ² , 10+/-5 Ci ² (10-9 vol/vol) 42 days, 75% RH, 30°C, 100+/-20 H ² S; 200+/-50 SO ² ; 200+/-50 NO ² , 20+/-5 Ci ² (10-9 vol/vol) -25 °C at +70 °C; 5 °C/min 25 °C
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-64 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-12 IEC 60068-2-12 IEC 60068-2-12 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-14 IEC 60068-2-14 IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-1	Level / Class 2 Fc 2M1 2	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = \pm 1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-5 H ² S; 200+/-20 SO ² ; 200+/-20 NO ² , 10+/-5 Cl ² (10-9 vol/vol) 42 days, 75% RH, 30°C, 100+/-20 H ² S; 200+/-50 SO ² ; 200+/-50 NO ² , 20+/-5 Cl ² (10-9 vol/vol) -25 °C at +70 °C; 5 °C/min -25 °C
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4 In storage ⁽²⁾ Temperature variation with specified variation rate Exposure to dry heat Continuous exposure to damp heat	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-6 IEC 60068-2-1 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-78 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-2 IEC 60068-2-1 IEC 60068-2-2	Level / Class 2 Fc 2M1 2 2 2 2 2 2 Level / Class Ad Bd Cab Kb/2 C Method 3 IIIA IIIA Nb Ab Bb Cab	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = \pm 1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-5 H ² S; 200+/-20 SO ² ; 200+/-20 NO ² , 10+/-5 H ² S; 200+/-20 SO ² ; 200+/-20 NO ² , 10+/-5 H ² S; 200+/-50 SO ² ; 200+/-50 NO ² , 20+/-5 Cl ² (10-9 vol/vol) -25 °C at +70 °C; 5 °C/min -25 °C +70 °C
Voltage interruptions Mechanical robustness In operation Vibrations Shocks Earthquakes De-energized Vibrations Shocks Jolts Climatic withstand During operation Exposure to cold Exposure to dry heat Continuous exposure to damp heat Salt mist Influence of corrosion/Gas test 2 Influence of corrosion/Gas test 4 In storage ⁽²⁾ Temperature variation with specified variation rate Exposure to cold Exposure to dry heat Continuous exposure to damp heat	IEC 60255-11 Standard IEC 60255-21-1 IEC 60068-2-6 IEC 60068-2-6 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60255-21-2 IEC 60068-2-12 IEC 60068-2-12 IEC 60068-2-78 IEC 60068-2-60 IEC 60068-2-60 IEC 60068-2-14 IEC 60068-2-14 IEC 60068-2-14 IEC 60068-2-2 IEC 60068-2-2 IEC 60068-2-14 IEC 60068-2-2 IEC 60068-2-2 IEC 60068-2-2 IEC 60068-2-14 IEC 60068-2-2 IEC 60068-2-2 IEC 60068-2-2 IEC 60068-2-2 IEC 60068-2-2 IEC 60068-2-30	Level / Class 2 Fc 2M1 2 2 2 2 2 Level / Class Ad Bd Cab Kb/2 C Method 3 IIIA IIIA Nb Ab Bb Cab Db	100 % during 100 ms Value 1 Gn; 10 Hz - 150 Hz 3 Hz - 13.2 Hz; a = \pm 1 mm 10 Gn / 11 ms 2 Gn (horizontal axes) 1 Gn (vertical axes) 2 Gn; 10 Hz - 150 Hz 27 Gn / 11 ms 20 Gn / 16 ms Value -25 °C +70 °C 10 days; 93 % RH; 40 °C 6 days 21 Days, 75% RH, 25°C, 500.10-9 vol/vol H ₂ S; 1000.10-9 vol/vol SO ² 21 Days, 75% RH, 25°C, 10+/-20 NO ² , 10+/-5 H ² S; 200+/-20 SO ² ; 200+/-20 NO ² , 10+/-5 Cl ² (10-9 vol/vol) 42 days, 75% RH, 30°C, 100+/-20 H ² S; 200+/-50 SO ² ; 200+/-50 NO ² , 20+/-50 Cl ² (10-9 vol/vol) -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 93 % RH; 40 °C

Test conducted with a mimic-based HMI in the case of GOST performance testing.
 Sepam must be stored in its original packing.
Base unit Environmental characteristics

Safety	Standard	Level / Class	Value
Enclosure safety tests			
Front panel tightness	IEC 60529	IP52	Other panels IP20
· · ·	NEMA	Туре 12	
Fire withstand	IEC 60695-2-11		650 °C with glow wire
Electrical safety tests			
1.2/50 µs impulse wave	IEC 60255-5		5 kV ⁽¹⁾
P ower frequency dielectric withstand	IEC 60255-5		2 kV 1mn ⁽²⁾
	ANSI C37.90		1 kV 1 mn (indication output) 1.5 kV 1 mn (control output)
Functional safety			
Functional safety of electrical/electronic/programmable electronic safety-related systems	IEC 61508, EN 61508	SIL2	Architecture, hardware and firmware assessment
Certification			
	EN 50263 harmonized standard	 European Electromagr 2004/108/EC of 15 Decen European Low Voltage of 12 December 2006 94/9/EC Directive ATE2 	etic Compatibility Directive (EMCD) nber 2004 Directive (LVD) 2006/95/CE
	UL508 - CSA C22.2 n° 14-95	5	File E212533
CSA	CSA C22.2 n° 14-95 / n° 94-	M91/n° 0.17-00	File 210625
(1) Except for communication: 3 kV in common mode and 1 kV in a	lifferential mode.		

(2) Except for communication: 1 kVrms.

Base unit

Dimensions

Front view of Sepam.

Dimensions

Side view of Sepam with MES120, flush-mounted in front panel with spring clips. Front panel: 1.5 mm (0.05 ln) to 6 mm (0.23 ln) thick.

Clearance for Sepam assembly and wiring.

A CAUTION HAZARD OF CUTS Trim the edges of the cut-out plates to remove any jagged edges.

Failure to follow this instruction can cause serious injury.

AMT880 mounting plate.

Top view of Sepam with MES120, flush-mounted in front panel with spring clips. Front panel: 1.5 mm (0.05 ln) to 6 mm (0.23 ln) thick.

Assembly with AMT880 mounting plate

mm in 214 8.43 141 5.55

FRR

Top view of Sepam with MES120, mounted with AMT880 and spring clips. Mounting plate: 3 mm (0.11 In) thick.

Connection diagrams Sepam series 80

Base unit Sepam series 80

Schneider

Base unit Connection

Connector	Туре	Reference	Wiring
(A), (E)	Screw type	CCA620	 wiring with no fittings : 1 wire with max. cross-section 0.2 to 2.5 mm² (≥AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Schneider Electric fittings: DZ5CE015D for 1 x 1.5 mm² wire (AWG 16) DZ5CE025D for 1 x 2.5 mm² wire (AWG 12) AZ5DE010D for 2 x 1 mm² wires (AWG 18) tube length: 8.2 mm (0.32 in) stripped length: 8 mm (0.31 in)
	6.35 mm ring lugs	CCA622	 6.35 mm ring or spade lugs (1/4") maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) stripped length: 6 mm use an appropriate tool to crimp the lugs on the wires maximum of 2 ring or spade lugs per terminal tightening torque: 1.2 (13.27 lb-in)
<u>C1</u> , <u>C2</u>	White RJ45 plug		CCA612
(D1), (D2)	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13.1 ft) CCA785 for MCS025 module: L = 2 m (6.6 ft)
F	Blue RJ45 plug		CCA614
Functional earth	Ring lug		Earthing braid, to be connected to cubicle grounding: ■ flat copper braid with cross-section ≥ 9 mm ² ■ maximum length: 500 mm (19.7 in)
(B1), (B2)	4 mm ring lugs	CCA630, CCA634 for connection of 1 A or 5 A CTs	 wire cross-section 1.5 to 6 mm² (AWG 16-10) tightening torque: 1.2 Nm (13.27 lb-in)
	RJ45 plug	CCA671, for connection of 3 LPCT sensors	Integrated with LPCT sensor

Connection characteristics

CAUTION LOSS OF PROTECTION OR RISK OF

NUISANCE TRIPPING

If the Sepam is no longer supplied with power or is in fail-safe position, the protection functions are no longer active and all the Sepam output relays are dropped out. Check that this operating mode and the watchdog relay wiring are compatible with your installation.

Failure to follow this instruction can result in equipment damage and unwanted shutdown of the electrical installation.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

• Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.

- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.
- Failure to follow these instructions will result in death or serious injury.

Connection diagrams Sepam series 80

Base unit Sepam B83

Connection characteristics

Connector	Туре	Reference	Wiring
(B1)	4 mm ring lugs	CCA630, for connection of 1 A or 5 A CTs	1.5 to 6 mm ² (AWG 16-10)
(B2)	Screw type	CCT640	VT wiring: same as wiring for the CCA620 Earthing connection: by 4 mm ring lug
$\overline{For connectors (A)},$	$(\underline{E}), (\underline{C1}), (\underline{C2}), (\underline{D1}), (\underline{D2}), \underline{o}$: see page	je 180 .	

CAUTION

LOSS OF PROTECTION OR RISK OF NUISANCE TRIPPING

If the Sepam is no longer supplied with power or is in fail-safe position, the protection functions are no longer active and all the Sepam output relays are dropped out. Check that this operating mode and the watchdog relay wiring are compatible with your installation.

Failure to follow this instruction can result in equipment damage and unwanted shutdown of the electrical installation.

- HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS
- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.
- Failure to follow these instructions will result in death or serious injury.

Connection diagrams Sepam series 80

Base unit Sepam C86

Connector	Туре	Reference	Wiring
(B1)	4 mm ring lugs	CCA630, for connection of 1 A or 5 A CTs	1.5 to 6 mm² (AWG 16-10)
	RJ45 plug	CCA671, for connection of 3 LPCT sensors	Integrated with LPCT sensor
(B2)	4 mm ring lugs	CCA630, for connection of 1 A, 2A or 5 A CTs	1.5 to 6 mm ² (AWG 16-10)
g Functional earth	Ring lugs		Earthing braid, to be connected to cubicle grounding: ■ flat copper braid with cross-section ≥ 9 mm ² ■ maximum length: 500 mm
For connectors A,	Ē, C1, C2, D1, D2, : see pag	je 180.	

186 Schneider

Base unit Phase current inputs

Variant 1: phase current measurement by 3 x 1 A or 5 A CTs (standard connection)

Connection of 3 x 1 A or 5 A sensors to the CCA630 connector.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

Falameters		
Sensor type	5 A C T or 1 A C T	
Number of CTs	11, 12, 13	
Rated current (In)	1 A to 6250 A	

Variant 2: phase current measurement by 2 x 1 A or 5 A CTs

Connection of 2 x 1 A or 5 A sensors to the CCA630 connector.

Measurement of phase 1 and 3 currents is sufficient for all protection functions based on phase current.

This arrangement does not allow the calculation of residual current, nor use of ANSI 87T and 87M differential protection functions on the Sepam T87, M87, M88, G87 and G88.

Parameters

Sensor type	5 A CT or 1 A CT	
Number of CTs	11, 13	
Rated current (In)	1 A to 6250 A	

Variant 3: phase current measurement by 3 LPCT type sensors

Connection of 3 Low Power Current Transducer (LPCT) type sensors to the CCA671 connector. It is necessary to connect 3 sensors; if only one or two sensors are connected, Sepam goes into fail-safe position.

Measurement of the 3 phase currents allows the calculation of residual current.

The In parameter, primary rated current measured by an LPCT, is to be chosen from the following values, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Parameter to be set using the SFT2841 software tool, to be completed by hardware setting of the microswitches on the CCA671 connector.

It is not possible to use LPCT sensors for the following measurements:

- phase-current measurements for Sepam T87, M88 and G88 with ANSI 87T
- transformer differential protection (connectors (B1) and (B2))
- phase-current measurements for Sepam B83 (connector (B1))
- unbalance-current measurements for Sepam C86 (connector (B2)).

Parameters

Sensor type	LPCT
Number of CTs	11, 12, 13
Rated current (In)	25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000 or 3150 A

Note: Parameter In must be set twice:

Software parameter setting using the advanced UMI or the SFT2841 software tool

Hardware parameter setting using microswitches on the CCA671 connector

Variant 1: residual current calculation by sum of 3 phase currents

Description

Residual current is calculated by the vector sum of the 3 phase currents I1, I2 and I3, measured by 3 x 1 A or 5 A CTs or by 3 LPCT type sensors. See current input connection diagrams.

Parameters

Residual current	rated residual current	Measuring range
Sum of 3 Is	In0 = In, CT primary current	0.01 to 40 In0 (minimum 0.1 A)

Variant 2: residual current measurement by CSH120 or CSH200 core balance CT (standard connection)

Description

Arrangement recommended for the protection of isolated or compensated neutral systems, in which very low fault currents need to be detected.

Parameters

Residual current	rated residual current	Measuring range	
2 A rating CSH	In0 = 2 A	0.1 to 40 A	
20 A rating CSH	In0 = 20 A	0.2 to 400 A	

Variant 3: residual current measurement by 1 A or 5 A CTs and CCA634

Δ

Parameters

Description

Residual current measurment by 1 A or 5 A CTs

Residual current	rated residual current	Measuring range
1ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)
5ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)

Base unit Residual current inputs

Variant 4: residual current measurement by 1 A or 5 A CTs and CSH30 interposing ring CT

Description

The CSH30 interposing ring CT is used to connect 1 A or 5 A CTs to Sepam to measure residual current:

 CSH30 interposing ring CT connected to 1 A CT: make 2 turns through CSH primary

CSH30 interposing ring CT connected to 5 A CT: make 4 turns through CSH primary.

Parameters

Residual current	rated residual current	Measuring range
1ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)
5ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)

4

Variant 5: residual current measurement by core balance CT with ratio of 1/n (n between 50 and 1500)

Description

The ACE990 is used as an interface between a MV core balance CT with a ratio of 1/n (50 \leq n \leq 1500) and the Sepam residual current input. This arrangement allows the continued use of existing core balance CTs on the installation.

Parameters

1 aramotoro		
Residual current	rated residual current	Measuring range
ACE990 - range 1 (0.00578 ≤ k ≤ 0.04)	In0 = Ik.n (1)	0.01 to 20 In0 (minimum 0.1 A)
ACE990 - range 2 (0.00578 ≤ k ≤ 0.26316)	In0 = lk.n ⁽¹⁾	0.01 to 20 In0 (minimum 0.1 A)

(1) n = number of core balance CT turns

k = factor to be determined according to ACE990 wiring and setting range used by Sepam

Connection diagrams Sepam series 80

Phase voltage inputs

Residual voltage input Main channels

Variant 1: measurement of 3 phase-to-neutral voltages (3 V, standard connection)

$\begin{array}{c} \underline{1} \\ \underline{1} \\$

Measurement of the 3 phase-to-neutral voltages allows the calculation of residual voltage, V0 Σ .

This variant does not allow the calculation of residual voltage.

Variant 4: measurement of 1 phase-to-neutral voltage (1 V)

This variant does not allow the calculation of residual voltage.

This variant does not allow the calculation of residual voltage.

Residual voltage input connection variants

Variant 6: measurement of residual voltage Vnt in generator neutral point

Variant 5: measurement of residual voltage V0

Phase voltage input connection variants

Variant 2: measurement of 2 phase-to-phase voltages (2 U)

Phase voltage inputs

Residual voltage input Additional channels for Sepam B83

Additional phase voltage input connection variants Variant 2: measurement of 2 phase-to-phase voltages (2 U')

Variant 1: measurement of 3 phase-to-neutral voltages (3 V', standard connection)

Measurement of the 3 phase-to-neutral voltages allows

Variant 3: measurement of 1 phase-to-phase voltage (1 U')

the calculation of residual voltage, V'0Σ.

This variant does not allow the calculation of residual voltage.

This variant does not allow the calculation of residual voltage.

Variant 4: measurement of 1 phase-to-neutral voltage (1 V')

This variant does not allow the calculation of residual voltage.

Additional residual voltage input connection

Variant 5: measurement of residual voltage V'0

Connection diagrams Sepam series 80

Phase voltage inputs

Residual voltage input Additional channel for Sepam B80

Connection to measure one additional voltage

This connection should be used to measure:

■ three phase-to-neutral voltages V1, V2, V3 on busbars no. 1

■ one additional phase-to-neutral voltage V'1 (or one additional phase-to-phase voltage U'21) on busbars no. 2.

This connection should be used to measure:

■ two phase-to-phase voltages U21, U32 and one residual voltage V0 on busbars no. 1

■ one additional phase-to-phase voltage U'21 (or one additional phase-to-neutral voltage V'1) on busbars no. 2.

Phase voltage inputs

Residual voltage input Available functions

The availability of certain protection and metering functions depend on the phase and residual voltages measured by Sepam.

The table below gives the voltage input connection variants for which for each protection and metering function dependent on measured voltages is available. Example:

The directional overcurrent protection function (ANSI 67N/67NC) uses residual voltage V0 as a polarization value.

It is therefore operational in the following cases:

measurement of the 3 phase-to-neutral voltages and calculation of

 $V0\Sigma (3 V + V0\Sigma, variant 1)$

measurement of residual voltage V0 (variant 5).

The protection and metering functions which do not appear in the table below are available regardless of the voltages measured.

Phase voltages measured		3 V + V0Σ		2 U		10			1 V				
(connection variant)			(var. 1)			(var. 2)	2)		(var. 3))		(var. 4)	
Residual voltage measured		-	V0	Vnt	-	V0	Vnt	-	V0	Vnt	—	V0	Vnt
(connection variant)			(v. 5)	(v. 6)		(v. 5)	(v. 6)		(v. 5)	(v. 6)		(v. 5)	(v. 6)
Protection functions dependent on voltage	es measured												
Directional phase overcurrent	67				•	-							
Directional earth fault	67N/67NC												
Directional active overpower	32P				•								
Directional reactive active overpower	32Q	•		-	•	-							
Directional active underpower	37P												
Field loss (underimpedance)	40												
Pole slip, phase shift	78PS				•								
Voltage-restrained overcurrent	50V/51V												
Underimpedance	21B				•								
Inadvertent energization	50/27				•								
100 % stator earth fault	64G2/27TN												
Overfluxing (V/Hz)	24				•			•					
Positive sequence undervoltage	27D												
Remanent undervoltage	27R							∎oø			∎oø		
Undervoltage (L-L or L-N)	27			•				∎oø			∎oø		
Overvoltage (L-L or L-N)	59							∎□Ø			∎□Ø		
Neutral voltage displacement	59N			-			•						
Negative sequence overvoltage	47			•	•								
Overfrequency	81H							∎oø			∎□Ø		
Underfrequency	81L			-				∎□Ø			∎□Ø		
Rate of change of frequency	81R				•								
Measurements dependent on voltages mea	asured		1	'		1	1		1	1		1	1
Phase-to-phase voltage U21, U32, U13 or U'2	1, U'32, U'13			-				U21,	U21	U21			
								U'21					
Phase-to-neutral voltage V1, V2, V3 or V'1, V'2	, V'3										V1,	V1,	V1
											V′1	V1	
Residual voltage V0 or V'0				-			_			_			_
Neutral point voltage Vnt							-			-			
I hird harmonic neutral point or residual voltage							-			-			-
Positive sequence voltage Vd or V'd /				-			-						
Active / repetive / engagement neuron D.O. S.													
Active / reactive / apparent power: P, Q, S		-	-	-		-	-	-	-	-			
Peak demand power PM, QM		– (1)	– (1)	– (1)	-	- (1)	-	-	-	-	D4/	D4/	D4/
Active / reactive / apparent power per phase : P1/P2/P3, Q1/Q2/Q3, S1/S2/S3		.,									Q1/ S1	Q1/ S1	Q1/S1
Power factor													
Calculated active and reactive energy (±Wh, ±VARh)								•				İ	
Total harmonic distortion, voltage Uthd		•			•			•					
Phase displacement φ0, φ'0													
Phase displacement $\varphi 1, \varphi 2, \varphi 3$		•			•					1			
Apparent positive sequence impedance Zd		•				-			1	1			
Apparent phase-to-phase impedances Z21, Z32, Z13						•							

Function available on main voltage channels.

□ Function available on Sepam B83 additional voltage channels.

Z Function available on Sepam B80 additional voltage channel, according to the type of the additional voltage measured.

(1) If all three phase currents are measured.

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts...

-	frame for the	100	Story Ohiory Stda Papers	fran hereast
		1400		PARTY STATE
Contraction in case of	Contract of the local division of the local	100	The second	And in case of the local division of the loc
-	Concession in the local division of the loca	1		Service of the local division of the local d
		1.000		
		the d	-	the second second
		-	the part of address for	

The electrical installation guide

According to IEC 60364

This guide, part of the Schneider Electric offer, is the essential tool to "guide" you any time in your business:

- design office, consultant
- contractor, panelbuilder
- teacher, trainer.

Comprehensive

$and \, concrete \, information \, on:$

- all the new technical solutions
- all the components of an
- installation from a global point of view
- all the IEC standards modifications
- all the fundamental
- electrotechnical knowledge

• all the design stages, from medium to low voltage.

Sepam series 20 Sepam series 40 Sepam series 60 Sepam series 80

Additional modules and accessories

Range description	5
Sepam series 20 and Sepam series 40	51
Sepam series 60	89
Sepam series 80	139
Software	197
Sepam software	197
SFT2841 setting and operating software	198
Function	198
SFT2841 connection to Sepam	200
Adaptation of the predefined functions	201
SFT2826 disturbance recording data display software	202
SFT850 configuration software for IEC 61850 protocol	203
SFT2885 programming software - Logipam	204
Power Launcher	206
Logic input / output modules	207
MES114 modules	207
Logic input / output assignment of Sepam series 20	209
Logic input / output assignment of Sepam series 40	210
MES120, MES120G, MES120H 14 input / 6 output module	211
Presentation	211
Installation	212
Logic input / output assignment	213
Remote modules	217
Selection guide	217
Connection	218
MET148-2 Temperature sensor module	219
MSA141 Analog output module	221
DSM303 Remote advanced UMI module	222
MCS025 Synchro-check module	224
Other modules	228
Sepam 100 MI	228
Presentation	228
Block and connection diagrams	229
Connection	232
Characteristics and dimensions	233

5

.../...

Sepam series 20 Sepam series 40 Sepam series 60 Sepam series 80

Additional modules and accessories

Communication accessories	234
Selection guide	234
Communication interfaces	235
Communication interface connection	236
ACE949-2 2-wire RS 485 network interface	237
ACE959 4-wire RS 485 network interface	238
ACE937 Fiber optic interface	239
ACE969TP-2 and ACE969FO-2 Network interfaces	240
ACE850TP and ACE850FO network interfaces	245
Converters	249
ACE909-2 RS 232 / RS 485 converter	249
ACE919CA and ACE919CC RS 485 / RS 485 converters	251
Sepam IEC 61850 level 1 ECI850	253
PowerLogic EGX100	257
PowerLogic EGX300	258
Ethernet EGX100 Gateway & EGX300 Server	259
Sensors	260
Selection guide	260
Voltage transformer	261
1A/5A current transformers	262
LPCT type current sensors	265
Test accessories	266
CSH120 and CSH200 Core balance CTs	268
CSH30 Interposing ring CT	270
ACE990 Core balance CT interface	271
Order form	275

Sepam software

Presentation

Three types of Sepam PC software are available:

- SFT2841 setting and operating software
- SFT2826 disturbance recording data display software
- SFT2885 programming software for the Sepam series 80 (Logipam)
- SFT850 advanced-configuration software for IEC 61850 protocol.

SFT2841 and SFT2826 software

SFT2841 and SFT2826 software is provided on the same CD-ROM as the Sepam documentation in PDF format.

PC connection cord

In order to use the SFT2841 software in point to point connected mode:

- the CCA783 PC connection cord, to be ordered separately, is designed to connect a PC to the RS 232 port on the front panel of a Sepam unit.

- the CCA784 PC connection cord, to be ordered separately, is designed to connect a PC to the USB port on the front panel of a Sepam unit.

The USB/RS232 TSXCUSB232 converter may be used with the CCA783 connection cord for connection to a USB port.

SFT2885 software

SFT2885 is available on a separate CD-ROM.

SFT850 software

SFT850 is available on a separate CD-ROM.

Minimum configuration required

SFT2841 and SFT2826 software					
Operating systems	Microsoft 2000/XP				
RAM	128 MB				
Space on disk	200 MB				

SFT2885

Operating systems	Microsoft 2000/XP
RAM	64 MB
Space on disk	30 MB

SFT850	
Operating systems	Microsoft 2000/XP
RAM	512 MB
Space on disk	200 MB

SFT2841 setting and operating software Function

The SFT2841 software is the setting and operating tool for Sepam series 20, Sepam series 40, Sepam series 60 and Sepam series 80.

- It may be used:
- prior to commissioning and without connection to Sepam, to prepare Sepam
- protection and parameter settings
- during commissioning, on a PC connected point-to-point to the front panel Sepam: □ to load, unload and modify Sepam protection and parameter settings
- □ to obtain all measurements and useful information during commissioning
- during operation, on a PC connected to a set of Sepam relays via an E-LAN
- during operation, on a PC connected to a set of Separt relays via an E-LA
- multipoint communication network:
- □ to manage the protection system
- □ to monitor the status of the electrical network
- □ to run diagnostics on any incidents affecting the electrical network.

Preparation of Sepam parameter and protection settings in unconnected mode

- configuration of Sepam and optional modules, and entry of general settings
- enabling/disabling of functions and entry of protection settings
- adaptation of predefined control and monitoring functions
- creation of personalized mimic diagrams for local display.

Sepam commissioning via a point-to-point connection to the front panel

- access to all functions available in unconnected mode, after entering the protection-setting or parameter-setting password
- transfer of Sepam parameter and protection setting file, prepared in unconnected
- mode (downloading function), protected by the parameter-setting password
- display of all measurements and useful information during commissioning
 display of logic input, logic output and LED status
- display of logic input, logic of
 test of logic outputs
- display of Logipam variables (Sepam series 80 only)
- setting of Logipam parameters (configuration bits, timers, etc.), (Sepam series 80 only)
- modification of passwords.

Management of protection functions and network diagnostics with an E-LAN multipoint network connection

■ reading of all Sepam protection and parameter settings, modifications following entry of the protection-setting or parameter-setting password

- display of all the Sepam measurement data
- display of Sepam, switchgear and network diagnosis data
- display of time-tagged alarm messages
- retrieval of disturbance recording data.

Efficient, easy-to-use software

- menus and icons for fast, direct access to the data required
 - guided navigation to go through all the data input screens in the natural order
- all data on the same function together in the same screen
- trilingual software: English, French, Spanish
- another local language: please contact us regarding local language customization
- on-line help, with all the technical information needed to use and implement Sepam
- familiar file management in Microsoft Windows environment:
- □ all file management services included: copy / paste, save, etc.
- □ printing of parameter and protection settings in standard layout.

SFT2841: Sepam series 80 hardware configuration

SFT2841: output testing

198

nrm history.

SFT2841 setting and operating software Function

SFT2841: Sepam series 80 sensor parameter setting.

SFT2841: Sepam series 80 application, with protection function measurement origin.

SFT2841: protection settings.

The table below gives the SFT2841 functions available for each of the 4 Sepam series: Sepam series 20, Sepam series 40, Sepam series 60 and Sepam series 80. **NC:** *function available in unconnected mode.*

S: function available with SFT2841 connected via Sepam front panel.

E: function available with SFT2841 connected to Sepam via E-LAN communication network.

Functions	Ser	ies	20	Seri	ies	40	Ser	ies	60	Seri	ies	80
	NC	S	Е	NC	S	Е	NC	S	Е	NC	S	Е
Management		1	1					1	1		1	
On-line help												
Management of parameter and protection setting files: creation, saving, downloading, and uploading	•			-	•		•			•		
Downloading and uploading of parameter and protection setting files		•			•	(1)		•	•		•	
Exporting of parameter and protection settings in a text file	•			•	•							
Printing of parameter and protection settings	-			•		-	•	-	•	•		
Modification of passwords, one for parameter setting and one for protection setting					-							
Sepam parameter setting												
Display of parameter settings	•			•			•					
Hardware configuration and parameter entry protected by parameter setting password	•											
Graphical parameter setting assistance					_		-					-
Standard configuration for IEC 61850 network	•			•		-	•			•		-
Protection setting				-	_	_						_
Display of protection settings	-	_		-	_	_		_	_			_
Entry of protection settings, protected by protection setting password	-			-		-	-	-	-	-		
Definition of customized tripping curve							•			•	-	-
Adaptation of the predefined f	uncti	ons		-	_	_						_
Display and modification of the control matrix	-			•			-			-		
Logic equation editing												
Number of instructions				100			200			200		
Number of dedicated remote indications				10			20			20		
Display of logic equations												
Load the Logipam program												
Setting of Logipam parameters												
Assignment of LEDs on front												
Editing of user messages												
Number of user messages				30			100			100		
Editing of personalized mimic diagram												
Assistance in commissioning	and	ope	ratiı	ng th	e in	stal	latior	۱				
Display of all the Sepam measurement data					-	-		-	-			-
Display of switchgear diagnosis assistance data												
Display of machine operating assistance data					-	-		-	-			
Display of time-tagged alarm messages					-	-						
Tripping context												
Retrieval of disturbance recording files					•	-						
Display of Logipam variables												
Display of logic input/output status												
Output testing												
Sepam diagnosis												

(1) Except for logic equations and personalized messages.

SFT2841 setting and operating software SFT2841 connection to Sepam

SFT2841 connection to the front panel of a Sepam

The SFT2841 can be connected to the front panel of Sepam series 20, Sepam series 40, Sepam series 60 or Sepam series 80 using the CCA783 or CCA784 cord or using the CCA783 + USB/RS232 (TSXCUSB232) converter.

SFT2841 connection to a set of Sepam relays

The SFT2841 can be connected to a set of Sepam relays, themselves connected to a E-LAN communication network in one of the three architectures presented below. These connections do not require any further software development work.

SFT2841 setting and operating software

Adaptation of the predefined functions

SFT2841: logic equation editor.

The logic equation editor included in the SFT2841 software can be used to: complete protection function processing: additional interlocking conditional inhibition/validation of functions etc.

■ adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

Note that the use of the logic equation editor excludes the possibility of using the Logipam programming software.

A logic equation is created by grouping logic input data received from:

Logic equation editor (Sepam series 40, series 60

protection functions

and series 80)

- logic inputs
- Iocal control orders transmitted by the mimic-based UMI
- remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message from the control matrix
- transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit breaking device closing
- used to inhibit or reset a protection function.

Alarms and operating messages (Sepam series 40, series 60 and series 80)

New alarm and operating messages may be created using the SFT2841 software. The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

- on Sepam's advanced UMI
- in the SFT2841 "Alarms" and "Alarm History" screens.

Local-control mimic diagram (Sepam series 60 and series 80)

The local-control mimic diagram displayed on the UMI can be personalized by adapting one of the supplied, predefined mimic diagrams or by creating a diagram from scratch.

- The mimic-diagram editor can be used to:
- create a fixed, bitmap background (128 x 240 pixels) using a standard drawing tool
 create animated symbols or use predefined animated symbols to represent the
- electrotechnical devices or other objects

 assign the logic inputs or internal status conditions that modify the animated

assign the logic inputs of internal status conditions that modify the animated symbols. For example, the logic inputs for the circuit-breaker position must be linked to the circuit-breaker symbol to enable the display of the open and closed conditions
 assign the logic outputs or internal status conditions that are activated when an

- opening or closing order are issued for the symbol
- display the current, voltage and power measurements on the mimic diagram.

Incomer nº.

Control matrix

The control matrix is used for simple assignment of data from:

- protection functions
- control and monitoring functions
- logic inputs
- logic equations or the Logipam program
- to the following output data:
- logic outputs
- 9 LEDs on the front of Sepam
- messages for local display
- triggering of disturbance recording.

SFT2841: control matrix.

SFT2826 disturbance recording data display software

SFT2826: analysis of a disturbance data record.

Function

The SFT2826 software is used to display, analyze and print disturbance data recorded by Sepam.

It uses COMTRADE (IEEE standard: Common format for transient data exchange for power systems) files.

Transfer of disturbance recording data

Before they are analyzed by SFT2826, the disturbance recording data must be transferred from Sepam to the PC:

- by the SFT2841 software
- or by the Modbus communication link.

Analysis of disturbance recording data

- selection of analog signals and logic data for display
- zoom and measurement of time between events
- display of all numerical values recorded
- exporting of data in file format
- printing of curves and/or numerical values recorded.

Characteristics

- The SFT2826 software comes with the SFT2841 software:
- 4 languages: English, French, Spanish, Italian
- on-line help with description of software functions.

SFT850 configuration software for IEC 61850 protocol

Function

The SFT850 software is used to easily create, modify and consult the SCL (Substation Configuration Language) configuration files for the IEC 61850 communication protocol:

■ CID (Configured IED description) file for configuration of a device connected to an IEC 61850 network

■ SCD (Substation Configuration Description) file for IEC 61850 configuration of substation equipment.

The SFT850 software supplements the standard IEC 61850 configuration created with the SFT2841 software in cases where the configuration must be precisely adapted to system requirements.

Adding or deleting equipment

The SFT850 software can be used to add or delete connected equipment in the IEC 61850 configuration. If a Sepam unit is added, the software uses the supplied ICD (IED capability description) file to start configuration.

Equipment connection

The SFT850 software describes the data for equipment connection to the network.

Editing the equipment configuration

The configuration of a given device described in a CID or SCD file can be modified: add, modify or delete datasets. A dataset is used to group data and optimise communication

add, modify or delete RCBs (Report Control Block). A Report Control Block defines dataset transmission conditions

add, modify or delete GCBs (Goose Control Block). A Goose Control Block defines how data is exchanged between Sepam units

modify dead measurement bands. This parameter is used to optimise communication in that measurements are transmitted only if they have changed significantly.

Generating CID files

The SFT850 software can generate the CID file for each device on the basis of an SCD file.

SFT2885 programming software - Logipam

Function

The SFT2885 programming software (called Logipam) is intended exclusively for the Sepam series 80 and can be used to:

adapt predefined control and monitoring functions

program specific control and monitoring functions, either to replace the predefined versions or to create completely new functions, to provide all the functions required by the application. It is made up of:

 a ladder-language program editor used to address all Sepam data and to program complex control functions

- a simulator for complete program debugging
- a code generator to run the program on Sepam.

The ladder-language program and the data used can be documented and a complete file can be printed.

Only the Sepam series 80 with a cartridge containing the Logipam SFT080 option can run the control and monitoring functions programmed by the Logipam SFT2885 software.

The complete Logipam software is made up of the executable program run by Sepam and the source program that can be modified by the Logipam SFT2885 programming software.

The SFT2841 setting and operating software, required for implementation of the Logipam program, offers the following functions:

 association of the complete Logipam program with the Sepam parameter and protection settings

loading and unloading of Logipam program, parameters and settings in the Sepam cartridge

- running of the functions programmed with Logipam:
- □ display of the status of Logipam internal bits

□ setting of Logipam parameters: configuration bits, timers, etc.

SFT2885 programming software - Logipam

SFT2885: ladder-language program, structured in sections.

SFT2885: variable editor

SFT2885: program debugging

Characteristics

Program structure

- A ladder-language program is made up of a series of rungs executed sequentially:
- maximum 1000 lines with 9 contacts and 1 coil maximum per line
- with a maximum total number of 5000 contacts and coils
- Comments may be made for each line.

Sections

The program can be broken down into sections and subsections to clarify the structure and facilitate reading. It is possible to set up three levels of sections. Comments may be added for each section.

Execution of each section can be subjected to conditions.

Variable editor

Each variable is defined by an invariable identifier and can be linked to a name or a comment.

The programmer can decide to work directly with the identifiers or with the linked names.

The list of the variables used and the cross references may be consulted during programming.

Graphic elements in the ladder language

The graphic elements are the instructions in the ladder language:

- NO and NC contacts
- rising and falling-edge detection contacts
- direct or negated coils
- set and reset coils
- coils and contacts linked to timers, counters and clocks.

Available resources

Sepam variables

- All the data used by Sepam functions can be addressed by Logipam:
- all logic inputs and outputs
- all remote-control orders and remote indications
- (the remote-control orders and remote indication used in the Logipam program are no longer used by the predefined functions)
- all protection-function inputs and outputs
- all inputs and outputs for the predefined control and monitoring functions
- all inputs and outputs for symbols in the mimic-based UMI
- all system data
- all logic inputs GOOSE

Logipam internal variables

64 configuration bits to parameter program processing, settable via the SFT2841 software and the display

- 128 bits used by the control matrix to control LEDs, messages and logic outputs
- 128 internal bits that are saved
- 512 internal bits that are not saved.

Logipam functions

- 60 timers that can be set for a rising edge (TON) or a falling edge (TOF)
- 24 incremental counters with adjustable thresholds
- 4 clocks for a given week.

Debugging tools

The Logipam software offers a complete set of tools for program debugging: step-by-step or continuous program execution to simulate the programmed

- functions
- color animation of the rungs and all program variables
- grouping in a table of all program variables requiring monitoring.

Documentation

The application file can be printed in part or in whole.

The application file can be personalized : front page, title block, general description of the program, etc.

Power Launcher Makes it easy

Power Launcher makes it easy to have the latest version of all your software compliant with your latest device.

- In one glance, you can see the available software for each device family:
 Compact NSX & Masterpact circuit breakers
 TeSys motor-starters

- □ Sepam relays
- □ ION,PM and CM meters
- Always up to date thanks to the simple notification and download of the latest software updates.
- Save time by customizing your own software "favorites".

Logic input / output modules

MES114 modules

10 input/4 output MES114 module.

Function

The 4 outputs included on the Sepam series 20 and 40 may be extended by adding an optional MES114 module with 10 inputs and 4 outputs, available in 3 versions:

- MES114: 10 DC inputs voltage from from 24 V DC to 250 V DC
- MES114E: 10 inputs, voltage 110-125 V AC or V DC
 MES114F: 10 inputs, voltage 220-250 V AC or V DC.

Characteristics

MES114 modu	ıle					
Weight	0.28 kg (0.6	617 lb)				
Operating temperature	-25 °C to +70) °C (-13 °Fto	+158 °F)			
Environmental	Same chara	cteristics as S	Sepam base	units		
Logical inputs	MES114	MES114	E	MES114	IF	
Voltage	24 to 250 V DC	110 to 125 V DC	110 V AC	220 to 250 V DC	220 to 240 V AC	
Range	19.2 to 275 V DC	88 to 150 VV DC	88 to 132 V AC	176 to 275 V DC	176 to 264 V AC	
Frequency	1	1	47 to 63 Hz	:/	47 to 63 H	z
Typical consumption	3 mA	3 mA	3 mA	3 mA	3 mA	
Typical switching threshold	14 V DC	82 V DC	58 V AC	154 V DC	120 V AC	
Input limit At state 1	≥ 19 V DC	≥88 V DC	≥88 V AC	≥ 176 V DC	≥176 V A	0
voltage At state 0	≤6VDC	≤75 V DC	≤22 V AC	≤ 137 V DC	≤48 V AC	
Isolation of inputs from other isolated groups	Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	
Isolation between inputs	Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	
O11 control re	lav outpu	ut				
Voltage	DC	24 / 48 V DC	2 127 V DC	220 V DC	250 V CC	
	AC	-	-	-	-	100 to
	(47.5 to 63 Hz)					240 V AC
Continuous current		8 A	8 A	8 A	8 A	8 A
Breaking capacity	Resistive load	8/4A	0.7 A	0.3 A	0.2 A	8 A
	Load L/R < 20 ms	6/2A	0.5 A	0.2 A	-	-
	Load L/R < 40 ms	4/1A	0.2 A	0.1A	-	-
	Load cos φ > 0.3	-	-	-	-	5 A
Making capacity		< 15 A for 20)0 ms			
Isolation of outputs from other isolated groups	Enhanced					
Isolation between outputs	Enhanced					
012 to 014 an	nunciatio	on relav o	output			
Voltage	DC	24/48 V DC	C 127 V DC	220 V DC	250 V DC	
	AC (47.5 to	-	-	-	-	100 to 240 V AC
	63 Hz)					
Continuous current		2 A	2 A	2 A	2 A	2A
Breaking capacity	Resistive load	2/1A	0.6 A	0.3 A	0.2 A	-
	Load L/R < 20 ms	2/1A	0.5 A	0.15 A	-	
	Load $\cos \phi > 0.3$	-	-	-	-	1A
Making capacity		< 15 A for 20	00 ms			
Isolation of outputs in relation to other isolated groups	Enhanced					
Isolation between outputs	Enhanced					

MES114 modules

Description

- (L), (M) and (K): 3 removable, lockable screw-type connectors
- (L): connectors for 4 relay outputs:
- O11: 1 control relay output
- O12 to O14: 3 annunciation relay outputs
- (M): connectors for 4 independent logic inputs I11 to I14
- $\overline{(k)}$: connectors for 6 logic inputs:
- I21: 1 independent logic input
- I22 to I26: 5 common point logic inputs.
- 1 25-pin sub-D connector to connect the module to the base unit.
- 2 Voltage selector switch for MES114E and MES114F module inputs, to be set to:
- V DC for 10 DC voltage inputs (default setting)
- VAC for 10 AC voltage inputs.

3 Label to be filled in to indicate the chosen parameter setting for MES114E and MES114F input voltages.

The parameter setting status can be accessed in the "Sepam Diagnosis" screen of the SFT2841 software tool.

Parameter setting of the inputs for AC voltage (VAC setting) inhibits the "operating time measurement" function.

Assembly

①Insert the 2 pins on the MES module into the slots 1 on the base unit. 2 Flatten the module up against the base unit to plug it into the connector 2. (3) Tighten the mounting screw 3.

MES114/MES114E/MES114F

Connection

The inputs are potential-free and the DC power supply source is external.

- □ 1 wire with maximum cross-section 0.2 to 2.5 mm² (AWG 24-12)
- \Box or 2 wires with maximum cross-section 0.2 to 1 mm² (AWG 24-18)
- □ stripped length: 8 to 10 mm (0.315 to 0.39 in)
- Wiring with fittings:
- □ terminal 5, recommended wiring with Schneider Electric:
- DZ5CE015D for 1 wire 1.5 mm² (AWG 16)
- DZ5CE025D for 1 wire 2.5 mm² (AWG 12)
- AZ5DE010D for 2 wires 1 mm² (AWG 18)
- □ tube length: 8.2 mm (0.32 in)
- □ stripped length: 8 mm (0.31 in).

Logic input / output assignment of Sepam series 20

The use of the preset control and monitoring functions requires exclusive parameter setting and particular wiring of the inputs according to their application and the type of Sepam.

The advanced UMI or the SFT2841 software may be used to assign inputs and set the control and monitoring function parameters.

Since an input may only be assigned to a single function, not all the functions are available at the same time.

Example: if the logic discrimination function is used, the switching of groups of settings function may not be used.

Table of input/output assignment by application								
Functions	S20	S24	T20	T24	M20	B21 - B22	Assignment	
Logic inputs								
Open position	-			•		•	111	
Closed position				•		•	112	
Logic discrimination, receive blocking input							113	
Switching of groups of settings A/B	-							
External reset							114	
External tripping 4 ⁽¹⁾	-		•	•		•		
External tripping 1 ⁽¹⁾	•		(2)	(2)			121	
External network synchronization	-	•			•	-		
External tripping 2 ⁽¹⁾			(3)				122	
Motor re-acceleration					•			
External tripping 3 ⁽¹⁾	-		(4)	(4)		•	123	
Buchholz alarm ⁽¹⁾ (Buchholz alarm message)								
Rotor rotation detection					•			
Thermistor tripping (1)			-	-	-			
Inhibit earth fault protection		•						
End of charging position	•			•	•		124	
Thermostat alarm ⁽¹⁾ (thermostat alarm message)			•	•				
Thermistor alarm ⁽¹⁾			•	•	•			
External tripping 5 and 50BF activation (1)		(1)		(1)				
Inhibit remote control, excluding TC1 ⁽¹⁾	•					•	125	
Inhibit remote control, including TC1 ⁽¹⁾	-			•	•	-		
SF6-1	-	•	•	•	•	•		
SF6-2	-					•	126	
Change of thermal settings			•	•	•			
Inhibit thermal overload			=	-	=			
Inhibit recloser	-	•						
Logic outputs								
Tripping	-			•	•	•	01	
Inhibit closing	•	•		•			02	
Watchdog	•					•	04	
Close order	•					•	011	
Nata all afthe leave in the and available via the annual of	in a limb number of a second		4h - OFTO04	4			1	

Note: all of the logic inputs are available via the communication link and are accessible in the SFT2841 control matrix for other non predefined applications.

(1) These inputs have parameter setting with the prefix "NEG" for undervoltage type operation.

(2) Buchholz/Gas trip message.

(3) Thermostat trip message.(4) Pressure trip message.

Logic input / output assignment of Sepam series 40

Inputs and outputs may be assigned to predefined control and monitoring functions using the SFT2841 software, according to the uses listed in the table below.

 all the logic inputs, whether or not assigned to predefined functions, may be used for the SFT2841 customization functions according to specific application needs:

 in the control matrix, to link inputs to output relays, LED indications or display messages

□ in the logic equation editor, as logic equation variables

■ the control logic of each input may be inverted for undervoltage type operation.

S40 S41 S42 S43 S44 S50 S51 S52 S53 S54 T40 T42 T50 T52 M40 M41 G40 Assignment **Functions** Logic inputs Open position 111 Closed position 112 Logic discrimination, Free receive blocking input 1 Logic discrimination, Free receive blocking input 2 Switching of groups of settings A/B 113 External reset ī Free External tripping 1 Free External tripping 2 Free External tripping 3 Free Buchholz/gas tripping Free Thermostat tripping Free Pressure tripping Free Thermistor tripping Free Buchholz/gas alarm Free Thermostat alarm Free Pressure alarm Free Thermistor alarm Free End of charging Free position Inhibit remote control Free SF6 Free Inhibit recloser Free External 121 synchronization Inhibit thermal Free overload Switching of thermal Free settings Motor re-acceleration Free Rotor rotation Free detection Inhibit undercurrent Free Inhibit closing Free Open order Free Close order Free Phase voltage Free transformer fuse melting Residual voltage transformer fuse Free melting External positive Free active energy counter External negative Free active energy counter External positive Free reactive energy counter External negative Free reactive energy counter Downstream load start up Logic outputs Tripping 01 Inhibit closing 02 Watchdog 04 Close order 011

Assignment table of logic inputs by application

Note: all of the logic inputs are available via the communication link and are accessible in the SFT2841 matrix for other non predefined applications

Logic input / output modules

MES120, MES120G, MES120H 14 input / 6 output module Presentation

Function

The output relays included on the Sepam series 60 and 80 base unit may be extended by adding 1, 2 or 3 MES120 modules with 14 DC logic inputs and 6 outputs relays (1 control relay output and 5 indication relay outputs).

Sepam series	Output on base unit	Extendable with nb max of MES120
series 60	4	2
series 80	5	3

Three modules are available for the different input supply voltage ranges and offer different switching thresholds:

■ MES120, 14 inputs 24 V DC to 250 V DC with a typical switching threshold of 14 V DC

■ MES120G, 14 inputs 220 V DC to 250 V DC with a typical switching threshold of 155 V DC

■ MES120H, 14 inputs 110 V DC to 125 V DC with a typical switching threshold of 82 V DC.

MES120 14 input / 6 output module.

Characteristics

MES120 / MES120G /	MES120H modules								
Weight		0.38 kg (0.83 lb)							
Operating temperature		-25 °C to +70 °C (-13 °F to +158 °F)							
Environmental characteristics		Same characteristics as Sepam base units							
Logic inputs		MES120	MES12)G	MES120H				
Voltage		24 à 250 V DC	220 to 250	/ DC	110 to 125 V DC				
Range		19.2 à 275 V DC	170 to 275	/ DC	88 to 150 V DC				
Typical consumption		3 mA	3 mA		3 mA				
Typical switching threshold		14 V DC	155 V DC		82 V DC				
Input limit voltage	At state 0	< 6 V DC	< 144 V DC		< 75 V DC				
	At state 1	> 19 V DC	> 170 V DC		> 88 V DC				
Isolation of inputs from other isola	ated groups	Enhanced	Enhanced		Enhanced				
Control relay output	Ox01								
Voltage	DC	24/48 V DC	127 V DC	220 V DC	250 V DC				
	AC (47.5 to 63 Hz)	-	-	-	-	100 à 240 V AC			
Continuous current		8A	8 A	8 A	8 A	8A			
Breaking capacity	Resistive load	8/4A	0.7 A	0.3 A	0.2 A	8 A			
	Load L/R < 20 ms	6/2A	0.5A	0.2 A	-	-			
	Load L/R < 40 ms	4/1A	0.2A	0.1 A	-	-			
	Load p.f > 0.3	-	-	-	-	5 A			
Making capacity		< 15 A for 200 ms							
Isolation of inputs from other isola	ated groups	Enhanced							
Relay output Ox02 to	Ox06								
Tension	Continue	24/48 V DC	127 V DC	220 V DC	250 V DC				
	Alternative (47.5 à 63 Hz)	-	-	-	-	100 to 240 V AC			
Continuous current		2A	2 A	2 A	2A	2 A			
Breaking capacity	Load L/R < 20 ms	2/1A	0.5A	0.15 A	0.2 A	-			
	Load p.f > 0.3	-	-	-	-	1 A			
loolation of innuts from other is als	tod groups	Embranced							

its from other is ated group

Description 3 removable, lockable screw-type connectors.

1 20-pin connector for 9 logic inputs:

- Ix01 to Ix04: 4 independent logic inputs
- Ix05 to Ix09: 5 common point logic inputs.
- 27-pin connector for 5 common point logic inputs.
 3 17-pin connector for 6 relay outputs:
- Ox01: 1 control relay output
- Ox02 to Ox06 : 5 indication relay outputs. Addressing of MES120 module inputs / outputs:
- x = 1 for the module connected to H1 ■ x = 2 for the module connected to H2
- x = 3 for the module connected to H3.
- (4) MES120G, MES120H identification label (MES120 modules have no labels).

Logic input / output modules

MES120, MES120G, MES120H 14 input / 6 output module Installation

Assembly

Installation of an MES120 module on the base unit

- insert the 2 pins on the MES module into the slots ① on the base unit
- push the module flat up against the base unit to plug it into the connector (H2)
- partially tighten the two mounting screws (2) before locking them.
- MES120 modules must be mounted in the following order:
- if only one module is required, connect it to connector ⊕
- if 2 modules are required, connect them to connectors (H1) and (H2) (maximum configuration for Sepam series 60)
- **i** if 3 modules are required (maximum configuration for Sepam series 80 only), the 3 connectors (H_1) , (H_2) and (H_3) are used.

Installation of the second MES120 module, connected to base unit connector H2.

Connection

The inputs are potential-free and the DC power supply source is external.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

■Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

■NEVER work alone.

Turn off all power supplying this equipment before working on or inside it.

Consider all sources of power, including the possibility of backfeeding.

Always use a properly rated voltage sensing device to confirm that all power is off.
 Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Wiring of connectors

- wiring without fittings:
- □ 1 wire with maximum cross-section 0.2 to 2.5 mm² (≥ AWG 24-12)
- □ or 2 wires with maximum cross-section 0.2 to 1 mm² (≥ AWG 24-16)
- □ stripped length: 8 to 10 mm (0.31 to 0.39 in)
- wiring with fittings:
- □ recommended wiring with Schneider Electric fittings:
- DZ5CE015D for one 1.5 mm² wire (AWG 16)
- DZ5CE025D for one 2.5 mm² wire (AWG 12)
- AZ5DE010D for two 1 mm² wires (AWG 18)
- \Box tube length: 8.2 mm (0.32 in)
- □ stripped length: 8 mm (0.31 in).

MES120, MES120G, MES120H 14 input / 6 output module Logic input / output assignment

Inputs and outputs may be assigned to predefined control and monitoring functions using the SFT2841 software, according to the uses listed in the table below.
The control logic of each input may be inverted for undervoltage type operation.
All the logic inputs, whether or not assigned to predefined functions, may be used for the customization functions according to specific application needs:
In the control matrix (SFT2841 software), to connect an input to a logic output, a LED on the front of Sepam or a message for local indication on the display

■ in the logic equation editor (SFT2841 software), as logic equation variables

			•						
Functions	S60	S62	T60	T62	M61	G60	G62	C60	Assignment
Tripping / contactor control	•	•	•	•	•	•	•	•	01
Inhibit closing						•			O2 by default
Closing									O3 by default
Watchdog						•			O5
Logic discrimination, blocking send 1	•				•	•		•	O102 by default
Logic discrimination, blocking send 2									O103 by default
Genset shutdown						•			Free
De-excitation						•			Free
Load shedding									Free
AT, closing of NO circuit breaker			•	•		•			Free
AT, closing of coupling						•			Free
AT, opening of coupling	•		•						Free

Logic Ox output assignment table

Note: The logic outputs assigned by default may be freely reassigned.

Assignment table for logic lx inputs common to all applications

Functions	S60	S62	T61	T62 T67	M67	G67	G62 G66	C66	Assignment
Closed circuit breaker	•		•		•	•	•	•	1101
Open circuit breaker					-				1102
Synchronization of Sepam internal clock via external pulse	•	•	•	•	•	•	•	•	1103
Switching of groups of settings A/B									Free
External reset			•		•			•	Free
Earthing switch closed	•	•	•			•		•	Free
Earthing switch open									Free
External trip 1									Free
External trip 2	•	•	•					•	Free
External trip 3									Free
End of charging position									Free
Inhibit remote control (Local)	•	•	•					•	Free
SF6 pressure default			•		•				Free
Inhibit closing			•						Free
Open order	•	•	•			•		•	Free
Close order		•	•		•				Free
Phase VT fuse blown									Free
V0 VT fuse blown		•	•		•	•		•	Free
External positive active energy meter		•	•						Free
External negative active energy meter					-				Free
External positive reactive energy meter		•	•		•		•		Free
External negative reactive energy meter	•	•	•		•		-	•	Free
Racked out circuit breaker					•				Free
Switch A closed		•			•		•		Free
Switch A open		•	•					•	Free
Switch B closed			•						Free
Switch B open									Free
Closing-coil monitoring									Free

Logic input / output modules

MES120, MES120G, MES120H **14 input / 6 output module** Logic input / output assignment

	Assignment table of logic lx inputs by application													
Functions	S60	S62	T60	T62	M61	G60	G62	C60	Assignment					
Inhibit recloser	•								Free					
Inhibit thermal overload			•						Free					
Switching of thermal settings			-						Free					
Blocking reception 1			•						Free					
Blocking reception 2									Free					
Buchholz trip			-		•				Free					
Thermostat trip							•		Free					
Pressure trip			-				-		Free					
Thermistor trip			-		•		•		Free					
Buchholz alarm							•		Free					
Thermostat alarm			-				-		Free					
Pressure alarm									Free					
Thermistor alarm			-						Free					
Rotor speed measurement					-				1104					
Rotor rotation detection						•			Free					
Motor re-acceleration					•				Free					
Load shedding request					•				Free					
Inhibit undercurrent									Free					
Priority genset shutdown									Free					
De-excitation						•			Free					
Close enable (ANSI 25)	•					•			Free					
Inhibit opposite-side remote control (local)						•			Free					
Inhibit remote-control coupling (local)	•								Free					
Coupling open	•		•			•			Free					
Coupling closed						•			Free					
Opposite side open	•		-			•	•		Free					
Opposite side closed			•	•		•	•		Free					
Selector set to Manual (ANSI 43)			•	•					Free					
Selector set to Auto (ANSI 43)			•			•			Free					
Selector set to Circuit breaker (ANSI 10)			•	•		•			Free					
Selector set to Coupling (ANSI 10)									Free					
Opposite-side circuit breaker disconnected			•	•		•			Free					
Coupling circuit breaker disconnected									Free					
Coupling close order									Free					
Opposite-side voltage OK									Free					
Inhibit closing of coupling									Free					
Automatic closing order									Free					

MES120, MES120G, MES120H 14 input / 6 output module Logic input / output assignment

Inputs and outputs may be assigned to predefined control and monitoring functions using the SFT2841 software, according to the uses listed in the table below.
The control logic of each input may be inverted for undervoltage type operation.
All the logic inputs, whether or not assigned to predefined functions, may be used for the customization functions according to specific application needs:

in the control matrix (SFT2841 software), to connect an input to a logic output, a LED on the front of Sepam or a message for local indication on the display
in the logic equation editor (SFT2841 software), as logic equation variables

■ in Logipam (SFT2885 software) as input variables for the program in ladder language.

Logic Ox o	utput assi	ignment	table
------------	------------	---------	-------

S80	S81	S82	S84	T81	T82 T87	M87	M81 M88	G87	G82 G88	B80	B83	C86	Assignment
•	•		•	•	-	•		•	•	•		•	01
•	•		•	•	•	•		•		•		•	O2 by default
			•										O3 by default
													O5
•	•		•	•	•	•		•		•		•	O102 by default
													O103 by default
													Free
													Free
													Free
•													Free
•													Free
													Free
												•	Free
													Free
	S80	S80 S81	S80 S81 S82 • • •	S80 S81 S82 S84 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	S80 S81 S82 S84 T81 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	S80 S81 S82 S84 T81 T82 T87 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	S80 S81 S82 S84 T81 T82 M87 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	S80 S81 S82 S84 T81 T82 T87 M87 M88 M81 M88 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <tdi< td=""><td>S80 S81 S82 S84 T81 T82 T87 M87 M88 M81 M88 G87 M88 I</td><td>S80 S81 S82 S84 T81 T82 T87 M87 M81 M88 G87 G82 G88 G82 G88 I</td><td>S80 S81 S82 S84 T81 T82 M87 M81 G87 G82 G80 I<</td><td>S80 S81 S82 S84 T81 T82 M87 M81 G87 G82 B80 B83 I</td><td>S80 S81 S82 S84 T81 T82 T87 M87 M88 M81 M88 G87 G88 G82 G88 B80 B83 C86 I</td></tdi<>	S80 S81 S82 S84 T81 T82 T87 M87 M88 M81 M88 G87 M88 I	S80 S81 S82 S84 T81 T82 T87 M87 M81 M88 G87 G82 G88 G82 G88 I	S80 S81 S82 S84 T81 T82 M87 M81 G87 G82 G80 I<	S80 S81 S82 S84 T81 T82 M87 M81 G87 G82 B80 B83 I	S80 S81 S82 S84 T81 T82 T87 M87 M88 M81 M88 G87 G88 G82 G88 B80 B83 C86 I

Note: The logic outputs assigned by default may be freely reassigned.

Assignment table for logic lx inputs common to all applications

Functions	S80	S81	S82	S84	T81	T82	M87	M81	G87	G82	B80	B83	C86	Assignment
						T 87		M88		G88				Ŭ
Closed circuit breaker	•	•	•	•		•	•	•	•	•	•	•		1101
Open circuit breaker					•						•		•	1102
Synchronization of Sepam internal clock via external pulse	•		•		•		•		•	•	•		•	1103
Switching of groups of settings A/B											•		•	Free
External reset														Free
Earthing switch closed	-				-		•				-	•	-	Free
Earthing switch open														Free
External trip 1														Free
External trip 2	-				-		•				-		•	Free
External trip 3											•		•	Free
End of charging position														Free
Inhibit remote control (Local)	-				-		•				-		-	Free
SF6 pressure default											•		•	Free
Inhibit closing														Free
Open order	-		-		-		•				-	•	-	Free
Close order											•		•	Free
Phase VT fuse blown	•						•				•		•	Free
V0 VT fuse blown	-				-		•			•	-		•	Free
External positive active energy meter														Free
External negative active energy meter														Free
External positive reactive energy meter	•				•		•				•	•		Free
External negative reactive energy meter											•		•	Free
Racked out circuit breaker														Free
Switch A closed	•				-		•				-		-	Free
Switch A open											•		•	Free
Switch B closed													•	Free
Switch B open	•										•		•	Free
Closing-coil monitoring														Free

MES120, MES120G, MES120H **14 input / 6 output module** Logic input / output assignment

Assignment table of logic lx inputs by application														
Functions	S80	S81	S82	S84	T81	T82	M87	M81	G87	G82	B80	B83	C86	Assianment
						T87		M88		G88				
Inhibit radaaar	-					107		NICC		000				Fron
	-	-	-	-										Free
Switching of thermal settings			-		-	-	-		-	-			-	Free
Blocking recention 1					-			_	-					Free
Blocking reception 2	-	-			-						-			Free
Buchholz trip														Free
Thermostat trip			1											Free
Pressure trip														Free
Thermistor trip														Free
Buchholz alarm														Free
Thermostat alarm														Free
Pressure alarm														Free
Thermistor alarm			1											Free
Rotor speed measurement														1104
Rotor rotation detection														Free
Motor re-acceleration														Free
Load shedding request														Free
Inhibit undercurrent							•							Free
Priority genset shutdown									•					Free
De-excitation									•	•				Free
Close enable (ANSI 25)														Free
Inhibit opposite-side remote control (local)														Free
Inhibit remote-control coupling (local)		•	•		•									Free
Coupling open	•				•									Free
Coupling closed														Free
Opposite side open			•		•									Free
Opposite side closed														Free
Selector set to Manual (ANSI 43)					•									Free
Selector set to Auto (ANSI 43)	•				•				-	•				Free
Selector set to Circuit breaker (ANSI 10)					•									Free
Selector set to Coupling (ANSI 10)					•									Free
Opposite-side circuit breaker disconnected	•				•				•	•	•			Free
Coupling circuit breaker disconnected	•				•									Free
Coupling close order														Free
Opposite-side voltage OK														Free
Inhibit closing of coupling														Free
Automatic closing order														Free
External closing order 1														Free
External closing order 2														Free
Additional phase voltage transformer fuse														Free
blown														
Additional V0 voltage transformer fuse blown														Free
Capacitor step 1 open													•	Free
Capacitor step 1 closed													•	Free
Capacitor step 2 open													•	Free
Capacitor step 2 closed													•	Free
Capacitor step 3 open														Free
Capacitor step 3 closed													•	Free
Capacitor step 4 open														Free
Capacitor step 4 closed													•	Free
Step 1 opening order														Free
Step 2 opening order														Free
Step 3 opening order													•	Free
Step 4 opening order													•	Free
Step 1 closing order													•	Free
Step 2 closing order													•	Free
Step 3 closing order													•	Free
Step 4 closing order													•	Free
Step 1 external trip													•	Free
Step 2 external trip													•	Free
Step 3 external trip													•	Free
Step 4 external trip													•	Free
Capacitor step 1 VAR control			L											Free
Capacitor step 2 VAR control														Free
Capacitor step 3 VAR control													•	Free
Capacitor step 4 VAR control														Free
External capacitor step control inhibit														Free
Manual capacitor step control													•	Free
Automatic capacitor step control														Free
Selection guide

Selection guide

4 remote modules are proposed as options to enhance the Sepam base unit functions:

■ the number and type of remote modules compatible with the base unit depend on the Sepam application

■ the DSM303 remote advanced UMI module is only compatible with base units that do not have integrated advanced UMIs.

			Sepam series 20		Sepam series 40		Sepam series 60		Sepam series 80			
			S2x, B2x	T2x, M2x	S4x	T4x,M4x, G4x	S6x	T6x, G6x	M6x, C6x	S8x, B8x	T8x, G8x	M8x, C8x
MET148-2	Temperature sensor module	See page 216	0	1	0	2	0	2	2	0	2	2
MSA141	Analog output module	See page 218	1	1	1	1	1	1	1	1	1	1
DSM303	Remote advanced UMI module	See page 219	1	1	1	1	1	1	1	1	1	1
MCS025	Synchro-check module	See page 221	0	0	0	0	1	1	0	1	1	0
Number of sets of interlinked modules / maximum number of remote modules			1 set of 3 interlinked modules		1 set of 3 interlinked modules		1 set of 3 interlinked modules		5 modules split between 2 sets of interlinked modules			

Remote modules

Connection

CAUTION

HAZARD OF NON-OPERATION

The MCS025 module must ALWAYS be connected with the special CCA785 cord, supplied with the module and equipped with an orange RJ45 plug and a black RJ45 plug.

Failure to follow this instruction can cause equipment damage.

Connection

Connection cords

Different combinations of modules may be connected using cords fitted with 2 black RJ45 connectors, which come in 3 lengths:

- CCA770: length = 0.6 m (2 ft)
- CCA772: length = 2 m (6.6 ft)
- CCA774: length = 4 m (13.1 ft).

The modules are linked by cords which provide the power supply and act as functional links with the Sepam unit (connector \bigcirc to connector \bigcirc a, \bigcirc d, \bigcirc d, ...).

Rules on inter-module linking

- Iinking of 3 modules maximum
- DSM303 and MCS025 modules may only be connected at the end of the link.

Maximum advisable configurations

Sepam series 20, Sepam series 40: just 1 set of interlinked modules

Sepam series 60: just 1 set of interlinked modules

Base	Cord	Module 1	Cord	Module 2	Cord	Module 3
	01 0a		00 03			
Series 60	CCA772	MSA141	CCA770	MET148-2	CCA774	DSM303
Series 60	CCA772	MSA141	CCA770	MET148-2	CCA785 ⁽¹⁾	MCS025
Series 60	CCA772	MSA141	CCA770	MET148-2	CCA772	MET148-2
Series 60	CCA772	MET148-2	CCA770	MET148-2	CCA774	DSM303
Series 60	CCA772	MET148-2	CCA770	MET148-2	CCA785 ⁽¹⁾	MCS025

Sepam series 80: 2 sets of interlinked modules

Sepam series 80 has 2 connection ports for remote modules, (D1) and (D2). Modules may be connected to either port.

MET148-2 Temperature sensor module

MET148-2 Temperature sensor module.

Function

The MET148-2 module can be used to connect 8 temperature sensors (RTDs) of the same type:

- Pt100, Ni100 or Ni120 type RTDs, according to parameter setting
- 3-wire temperature sensors
- A single module for each Sepam series 20 base unit, to be connected by one of the
- CCA770 (0.6 or 2 ft), CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords 2 modules for each Sepam series 40 or series 80 base unit, to be connected by
- CCA770 (0.6 or 2 ft), CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords
- The temperature measurement (e.g. in a transformer or motor winding) is utilized by the following protection functions:
- Thermal overload (to take ambient temperature into account)
- Temperature monitoring.

Characteristics

MEI 148-2 module						
Weight	0.2 kg (0.441 lb)					
Assembly	On symmetrical DIN rail					
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)					
Environmental characteristics	Same characteristics as Sepam base units					
Temperature sensors	Pt100	Ni100 / Ni120				
Isolation from earth	None	None				
Current injected in RTD	4 mA	4 mA				

(1) 70 mm (2.8 in) with CCA77x cord connected.

Description and dimensions

(A) Terminal block for RTDs 1 to 4.

(B) Terminal block for RTDs 5 to 8.

Da RJ45 connector to connect the module to the base unit with a CCA77x cord Dd RJ45 connector to link up the next remote module with a CCA77x cord (according to application).

(+) Grounding/earthing terminal.

- 1 Jumper for impedance matching with load resistor (Rc), to be set to:
 - Rc, if the module is not the last interlinked module (default position)
 Rc, if the module is the last interlinked module.
- 2 Jumper used to select module number, to be set to:
 - MET1: 1st MET148-2 module, to measure temperatures T1 to T8 (default position)

■ MET2: 2nd MET148-2 module, to measure temperatures T9 to T16 (for Sepam series 40, series 60 and series 80 only).

MET148-2 Temperature sensor module

MET148-2 $N^{\circ}1$ 1 2 3 $N^{\circ}2$ 4 5 0 7 $N^{\circ}3$ 9 10 11 12 $N^{\circ}8$ 9 10 11 12 $N^{\circ}8$

Connection

A CAUTION

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- Check that the temperature sensors are isolated from dangerous voltages.
- Failure to follow these instructions will result in death or serious injury.

Connection of the earthing terminal

By tinned copper braid with cross-section $\ge 6 \text{ mm}^2$ (AWG 10) or cable with cross-section $\ge 2.5 \text{ mm}^2$ (AWG 12) and length $\le 200 \text{ mm}$ (7.9 in), fitted with a 4 mm (0.16 in) ring lug.

Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).

Connection of RTDs to screw-type connectors

■ 1 wire with cross-section 0.2 to 2.5 mm² (AWG 24-12)

■ or 2 wires with cross-section 0.2 to 1 mm² (AWG 24-18).

- Recommended cross-sections according to distance:
- Up to 100 m (330 ft) ≥ 1 mm² (AWG 18)
- Up to 300 m (990 ft) \geq 1.5 mm² (AWG 16)
- Up to 1 km (0.62 mi) \geq 2.5 mm² (AWG 12)
- Maximum distance between sensor and module: 1 km (0.62 mi).

Wiring precautions

■ It is preferable to use shielded cables.

The use of unshielded cables can cause measurement errors which vary in degree according to the level of surrounding electromagnetic disturbance

Only connect the shielding at the MET148-2 end, in the shortest manner possible,

- to the corresponding terminals of connectors (A) and (B)
- Do not connect the shielding at the RTD end.

Accuracy derating according to wiring

The error Δt is proportional to the length of the cable and inversely proportional to the cable cross-section:

$\Delta t(^{\circ}C) = 2 \times \frac{L(km)}{S(mm^2)}$

- ±2.1°C/km for 0.93 mm² cross-section (AWG 18)
- ±1°C/km for 1.92 mm² cross-section (AWG 14).

MSA141 Analog output module

MSA141 analog output module

(1) 70 mm (2.8 in) with CCA77x cord connected.

Function

The MSA141 module converts one of the Sepam measurements into an analog signal:

- selection of the measurement to be converted by parameter setting
- 0-1 mA, 0-10 mA, 4-20 mA, 0-20 mA analog signal according to parameter setting
 scaling of the analog signal by setting minimum and maximum values of the
- converted measurement.
- Example: the setting used to have phase current 1 as a 0-10 mA analog output with a dynamic range of 0 to 300 A is:
- □ minimum value = 0
- □ maximum value = 3000

■ a single module for each Sepam base unit, to be connected by one of the CCA770 (0.6m or 2 ft), CCA772 (2m or 6.6 ft) or CCA774 (4m or 13.1 ft) cords.

The analog output can also be remotely managed via the communication network.

Characteristics

MSA141 module							
Weight	0.2 kg (0.441 lb)						
Assembly	On symme	trical DIN rai	1				
Operating temperature	-25 °C to +	70 °C (-13 °F	to +158 °F)				
Environmental characteristics	Same char	acteristics as	Sepam bas	e units			
Analog output							
Current	0-1 mA, 4-2	20 mA, 0-20	mA, 0-10 m/	4			
Scaling	Minimum v	alue					
(no data input checking)	Maximum	value					
_oad impedance	< 600 Ω (in	cluding wirin	g)				
Accuracy	0.5 %						
Measurements	Unit	series	series	series	series		
available		20	40	60	80		
Phase and residual currents	0.1A						
Phase-to-neutral and phase-to- phase voltages	1 V	•	•	•	•		
Frequency	0.01 Hz						
Thermal capacity used	1%			•			
Temperatures	1°C						
Active power	0.1 kW						
Reactive power	0.1 kvar						
Apparent power	0.1 kVA						
Power factor	0.01			•	•		
Remote setting via communication ink		•		•	-		

Description and dimensions

- A Terminal block for analog output.
- (Da) RJ45 socket to connect the module to the base unit with a CCA77x cord.
- (Dd) RJ45 socket to link up the next remote module with a CCA77x cord
- (according to application).
- (\pm) Earthing terminal.
- Jumper for impedance matching with load resistor (Rc), to be set to:
 ▷
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 <l
 - Rc, if the module is the last interlinked module.

Connection

Connection of the earthing terminal

By tinned copper braid with cross-section $\ge 6 \text{ mm}^2$ (AWG 10) or cable with cross-section $\ge 2.5 \text{ mm}^2$ (AWG 12) and length $\le 200 \text{ mm}$ (7.9 in), equipped with a 4 mm (0.16 in) ring lug.

Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).

- Connection of analog output to screw-type connector
- 1 wire with cross-section 0.2 to 2.5 mm² (AWG 24-12)
- or 2 wires with cross-section 0.2 to 1 mm² (AWG 24-18).

Wiring precautions

- It is preferable to use shielded cables
- Use tinned copper braid to connect the shielding at least at the MSA141 end.

DSM303 Remote advanced UMI module

DSM303 remote advanced UMI module.

Function

When associated with a Sepam that does not have its own advanced user-machine interface, the DSM303 offers all the functions available on a Sepam integrated advanced UMI.

It can be installed on the front panel of the cubicle in the most suitable operating location:

■ reduced depth < 30 mm (1.2 in)

■ a single module for each Sepam, to be connected by one of the CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords.

The module cannot be connected to Sepam units with integrated advanced UMIs.

Characteristics

DSM303 module	
Weight	0.3 kg (0.661 lb)
Assembly	Flush-mounted
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)
Environmental characteristics	Same characteristics as for Sepam base units

DSM303 Remote advanced UMI module

Description and dimensions

The module is simply flush-mounted and secured by its clips. No additional screw-type fastening is required.

- 1 Green LED: Sepam on.
- 2 Red LED:
 - steadily on: module unavailable
 - flashing: Sepam link unavailable.
- 3 9 yellow LEDs.
- 4 Label identifying the LEDs.
- 5 Graphic LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- 10 Alarm acknowledgment and clearing (or move cursor up).
- 11 LED test (or move cursor down).
- 12 Access to protection settings.
- 13 Access to Sepam parameters.
- 14 Entry of 2 passwords.
- 15 PC connection port.
- 16 Mounting clip.
- 17 Gasket to ensure NEMA 12 tightness

(gasket supplied with the DSM303 module, to be installed if necessary).

(Da) RJ45 lateral output connector to connect the module to the base unit with a CCA77x cord.

Cut-out for flush-mounting (mounting plate thickness < 3 mm or 0.12 in)

HAZARD OF CUTS

Trim the edges of the cut-out plates to remove any jagged edges.

Failure to follow this instruction can cause serious injury.

98.5±0,5 3.88 144±0,2 5.67

Connection

(Da) RJ45 socket to connect the module to the base unit with a CCA77x cord. The DSM303 module is always the last interlinked remote module and it systematically ensures impedance matching by load resistor (Rc).

5

223

MCS025 Synchro-check module

Function

The MCS025 module checks the voltages upstream and downstream of a circuit breaker to ensure safe closing (ANSI 25).

It checks the differences in amplitude, frequency and phase between the two measured voltages, taking into account dead line/busbar conditions. Three relay outputs may be used to send the close enable to several Sepam series 60 and 80 units.

The circuit-breaker control function of each Sepam series 60 and 80 unit will take this close enable into account.

The settings for the synchro-check function and the measurements carried out by the module may be accessed by the SFT2841 setting and operating software, similar to the other settings and measurements for the Sepam series 60 and 80.

The MCS025 module is supplied ready for operation with:

■ the CCA620 connector for connection of the relay outputs and the power supply

■ the CCT640 connector for voltage connection

■ the CCA785 cord for connection between the module and the Sepam series 60 and 80 base unit.

MCS025 synchro-check module.

Characteristics

MCS025 module									
Weight		1.35 kg (2.98 lb)	1.35 kg (2.98 lb)						
Assembly		With the AMT840	With the AMT840 accessory						
Operating temperature	-25 °C to +70 °C	(-13 °F to +158 °F)							
Environmental characteristics		Same characteris	tics as Sepam base uni	ts					
Voltage inputs									
Impédance d'entrée		> 100 kΩ							
Consommation		< 0.015 VA (VT 10)0 V)						
Tenue thermique permanente		240 V							
Surcharge 1 seconde		480 V							
Relay outputs									
Relay outputs O1 and O2	2								
Voltage	DC	24/48 V DC	127 V DC	220 V DC					
	AC (47.5 to 63 Hz)				100 à 240 V AC				
Continuous current		8 A	8 A	8 A	8 A				
Breaking capacity	Resistive load	8A/4A	0.7 A	0.3 A					
	Load L/R < 20 ms	6A/2A	0.5 A	0.2 A					
	Load L/R < 40 ms	4A/1A	0.2 A	0.1 A					
	Resistive load				8 A				
	Load p.f. > 0.3				5 A				
Making capacity		< 15 A for 200 ms							
Isolation of outputs from other other isolated groups		Enhanced							
Relay outputs O3 and O4	l (O4 not used)								
Voltage	DC	24/48 V DC	127 V DC	220 V DC					
	AC (47.5 to 63 Hz)				100 to 240 V AC				
Continuous current		2 A	2 A	2 A	2 A				
Breaking capacity	Load L/R < 20 ms	2A/1A	0.5 A	0.15 A					
	Load p.f. > 0.3				5 A				
Isolation of outputs from other other isolated groups		Enhanced							
Power supply									
Voltage		24 to 250 V DC, -20 % / +10 %		110 to 240 V A0 47.5 to 63 Hz	C, -20 % / + 0 %				
Maximum consumption		6 W		9 VA					
Inrush current		< 10 A for 10 ms		< 15 A for one half period					
Acceptable momentary outages		10 ms		10 ms					

224

Schneider Gelectric

Remote modules

MCS025 Synchro-check module

MCS025 Synchro-check module

MCS025.

Dimensions <u>mm</u> in Gasket to ensure NEMA 12 tighteness 40 Mouting 1

Assembly with AMT840 mounting plate

The MCS025 module should be mounted at the back of the compartment using the AMT840 mounting plate.

Connection characteristics

Connector	Туре	Reference	Wiring
A	Screw-type	CCA620	 Wiring with no fittings: 1 wire with maximum cross-section 0.2 to 2.5 mm² (> AWG 24-12) or 2 wires with cross-section 0.2 to 1 mm² (>AWG 24-16) stripped length: 8 to 10 mm (0.31 à 0.39 in) Wiring with fittings: recommended wiring with Schneider Electric fittings: DZ5CE015D for 1 wire 1.5 mm2 (AWG 16) DZ5CE025D for 1 wire 2.5 mm2 (AWG 12) AZ5DE010D for 2 x 1 mm² wires (AWG 18) tube length: 8.2 mm (0.32 in) stripped length: 8 mm (0.31 in)
В	Screw-type	CCT640	VT wiring: same as wiring of the CCA620 Earthing connection: by 4 mm (0.15 in) ring lug
D	Orange RJ45 connector		 CCA785, special prefabricated cord supplied with the MCS025 module: orange RJ45 connector for connection to port on the MCS025 module black RJ45 connector for connection to the Sepam series 60 and 80 base unit, either directly or via another remote module.

MCS025 Synchro-check module

(1) Phase-to-phase or phase-to-neutral connection.

CAUTION

HAZARD OF NON-OPERATION

The MCS025 module must ALWAYS be connected with the special CCA785 cord, supplied with the module and equipped with an orange RJ45 plug and a black RJ45 plug.

Failure to follow this instruction can cause equipment damage.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Sepam 100 MI Presentation

PE88068 -0 I

Function

The Sepam 100MI range includes 14 indication and local control modules:

- designed for control cubicles or cabinets
- which may be used individually or together and Sepam series 20/40/60/80 units.

Each module is suited to a particular indication and local control application. The right unit is chosen from the 14 types of Sepam 100MI according to:

- cubicle single-line diagram
- devices whose positions are to be indicated
- required local control functions.

The 14 types of Sepam 100MI are presented in detail in the pages which follow.

Advantages

■ includes all the animated mimic elements for viewing breaking and disconnection device status

- compact size and easy installation
- reduced cabling
- standardization and consistency with Sepam range.

Description

The front of Sepam 100MI includes the following, according to type:

- a mimic diagram showing the cubicle single-line diagram, with devices symbolized
- red and green signal lamp blocks to indicate the position of each device:
- □ red vertical bar showing device closed
- green horizontal bar showing device open
- local or remote control selector switch with lock
- circuit breaker open control pushbutton (KD2), active in local or remote mode
- circuit breaker close control pushbutton (KD1), active in local mode only

2 circuit breaker connect (KS1) and disconnect (KS2) control pushbuttons, active in local or remote mode.

There is a 21-pin connector on the back of Sepam 100MI for the connection of: ■ supply voltage

- device position indication inputs
- circuit breaker control (open/close and disconnect) outputs.

Sepam 100MI power supply : 24 to 127V ac/dc.

Note: In the Sepam 100MI mimics on the pages which follow, the position indicators of each device are identified as follows:

LVi: green indicator showing device number "i " in open position.

LRI: red indicator showing device number "i" in closed position. These markings do no appear on the front of the device.

Front of Sepam 100MI-X03.

Device closed

Disconnector

Circuit breaker.

Block and connection diagrams

Block and connection diagrams

Sepam 100MI-X22 Sepam 100MI-X22 mimic diagram

Sepam control enable 17 L KD1 16 CB closing _ . r Q CB tripping Ц КD2 ÷ 13 Common Q KS1 7 Plug in contro П 15 Plug out control Ц КS2

2 mimic diagram

Connection

230

Block and connection diagrams

Sepam 100MI-X14

Sepam 100MI-X14 mimic diagram

Sepam 100MI-X15 Sepam 100MI-X15 mimic diagram

Connection

Sepam 100MI-X10, Sepam 100MI-X11 and Sepam 100MI-X12

Sepam 100MI-X10 mimic diagram

FRR255

I.

0

Sepam 100MI-X11 mimic diagram

FRRJEG

L

0

Sepam 100MI-X12 Connection mimic diagram

Connection

Sepam 100 MI Characteristics and dimensions

Electrical cha	racteri <u>stics</u>			
Logic inputs				
Voltage		24/30 V	48/127	V
Max. consumption pe	er input	35 mA	34 mA	
Logic outputs (re	elays)			
Voltage		24/30 V	48/127	V
Permissible rated cur	rent	8 A		
Breaking capacity	DC resistive load	4 A	0,3 A	
	AC resistive load	8 A	8 A	
Number of on-load op	perations	10000	10000	
Power supply				
Auxiliary power source DC or AC current (50 or 60 Hz)	ce	24 to 30 V, -20 % 48 to 127 V, -20 %	+10 % % +10 %	
Consumption		24 to 30 V: 7.7 VA 48 V: 4 VA 110 V: 18 VA	(max. (at 33 V)	
Environment	al characterist	ics		
Climatic				
Operation		IEC 60068-2		-10 °C to +70 °C
Storage		IEC 60068-2		-25 °C to +70 °C
Damp heat		IEC 60068-2		95 % to 40 °C
Mechanical				
Degree of protection		IEC 60529	IP51	Front plate
Vibrations		IEC 60255-21-1	Class I	
Shocks		IEC 60255-21-2	Class I	
Seismic tests		IEC 60255-21-3	Class I	
Fire		NFC 20455	Glow wire 650	Ċ
Dielectric				
Power frequency		IEC 60255-4 (1)		2 KV - 1 mn
Le etreme annetie	ve	IEC 00255-4 (1)		JKV
Electromagnetic		IEC 60255 22 2	Class X	20.\//m
Electrostatic dischar	20	IEC 60255-22-3		30 1/11
Damped 1 MHz wave		IEC 60255-22-2		
5 ns fast transients	;	IEC 60255-22-1		
(1) Published in 1978 The "C€" marking on	and amended in 197 our products guarante	9. ees their conformity	to European dire	ctives.
Dimensions		Cutout		
		Curour		
in -1		in mm		
	– Mouting latch	DE86381		
8.74			7.95	

Schneider

DE 88382

There are 2 types of Sepam communication accessories:

communication interfaces, which are essential for connecting Sepam to the communication network

 converters and oth er accessories, as options, which are used for complete implementation of the communication network.

Communication-interface selection guide

		ACE949-2	ACE959	ACE937	ACE96	69TP-2	ACE9	69FO-2	ACE850TP	ACE850FO
Type of netwo	ork									
		S-LAN or E-LAN ⁽¹⁾	S-LAN or E-LAN ⁽¹⁾	S-LAN or E-LAN ⁽¹⁾	S-LAN	E-LAN	S-LAN	E-LAN	S-LAN and E-LAN	S-LAN and E-LAN
Protocol										
Modbus RTU		•	•	•	(3)		(3)			
DNP3					(3)		(3)			
IEC 60870-5-103					(3)		(3)			
Modbus TCP/IP									•	
IEC 61850									•	
Physical inter	face									
RS 485	2-wire	•								
	4-wire		•							
Fiber optic ST	Star			•						
	Ring						(2)			
10/100 base Tx	2 ports									
100 base Fx	2 ports									
Power supply	,									
DC		Provided by	Provided by	Provided by	24 to 250	V	24 to 250	V	24 to 250 V	24 to 250 V
AC		Sepam	Sepam	Sepam	110 to 240	VC	110 to 24) V	110 to 240 V	110 to 240 V
See details		Catalogue page 236	Catalogue page 237	Catalogue page 238	Catalog page 23	ue 9	Catalog page 23	ue 9	Catalogue page 244	Catalogue page 244

Only one connection possible, S-LAN or E-LAN.
 Except with the Modbus protocol.
 Not simultaneously (1 protocol per application).

Converter selection guide

	ACE909-2	ACE919CA	ACE919CC	EGX100	EGX300	ECI850
Converter						
Physical interface	1 port RS 232	1 port RS 485 port 2-wire	1 port RS 485 port 2-wire	1 Ethernet port 10/100 base T	1 Ethernet port 10/100 base T	1 Ethernet port 10/100 base T
Modbus RTU	(1)	(1)	(1)			
IEC 60870-5-103	(1)	(1)	(1)			
DNP3	(1)	(1)	(1)			
Modbus TCP/IP					•	
IEC 61850						•
To Sepam						
Physical interface	1 port RS 485 2-wire	1 port RS 485 2-wire	1 port RS 485 2-wire	1 port RS 485 2-wire or 4-wire	1 port RS 485 2-wire or 4-wire	1 port RS 485 2-wire or 4-wire
Distributed power supply RS 485	•	•	•			
Modbus RTU	(1)	(1)	(1)	•		•
IEC 60870-5-103	(1)	(1)	(1)			
DNP3	(1)	(1)	(1)			
Alimentation						
DC			24 to 48 V	24 V	24 V	24 V
AC	110 to 220 V AC	110 to 220 V AC				
See details	Catalogue page 248	Catalogue page 250	Catalogue page 250	Catalogue page 257	Catalogue page 257	Catalogue page 255

(1) The supervisor protocol is the same as the Sepam protocol.

Note: all these interfaces accept the E-LAN protocol.

234

Communication interface connection

Sepam series 20 and Sepam series 40: 1 communication port.

Sepam series 80 : 2 communication ports

CAUTION

HAZARD OF DEFECTIVE COMMUNICATION

- Never use both communication ports (C2)and (F) on a Sepam series 80 at the same time.
- The only communication ports that can be used simultaneously on a Sepam series 80 unit are
- portsC1)andC2)or portsC1)and(F)

Failure to follow this instruction can result in equipment damage.

CCA612 connection cord

Function

The CCA612 prefabricated cord is used to connect ACE942-2, ACE959, ACE937, ACE969TP-2 and ACE969FO-2 communication interfaces:

- to the white communication port C on a Sepam series 20 or series 40 base unit, or
 to the white communication port C on a Speam series 60 base unit.
- to the white communication port C1) or C2) on a Sepam series 80 base unit.

Characteristics

- Length = 3 m (9.8 ft)
- Fitted with 2 white RJ45 plugs.

CCA614 connection cord

Function

The CCA614 prefabricated cord can be used to connect ACE850TP and ACE850FO communication interfaces:

- to the white communication port (C) on a Sepam series 40 base unit, or
 - to the blue communication port (F) on a Sepam series 60 or series 80 base unit.
- **Characteristics**
- Length = 3 m (9.8 ft)
- Fitted with 2 blue RJ45 connectors
- Minimum curvature radius = 50 mm (1.97 in)

Sepam series 40

Sepam series 80

Communication interface connection

Connection to the communication network

RS485 network for ACE949-2, ACE959 and ACE969TP-2 interfaces

RS 485 network cable	2-wire	2-wire			
RS 485 medium	1 shielded twisted pair	2 shielded twisted pairs			
Distributed power supply (1)	1 shielded twisted pair	1 shielded twisted pair			
Shielding	Tinned copper braid, coverage > 65 %				
Characteristic impedance	120 Ω				
Gauge	AWG 24				
Resistance per unit length	< 100 Ω/km (62.1Ω/mi)				
Capacitance between conductors	< 60 pF/m (18.3 pF/ft)				
Capacitance between conductor and shielding	< 100 pF/m (30.5 pF/ft)				
Maximum length	1300 m (4270 ft)				

Fiber-optic network for ACE937 and ACE969FO-2 interfaces

Fiber optic									
Fiber type Graded-index multimode silica									
Wavelength		820 nm (invisible	infra-red)						
Type of connector	r	ST (BFOC bayonet fiber optic connector)							
Fiber optic diameter (µm)	Numerical aperture (NA)	Maximum attenuation (dBm/km)	Maximum fiber length						
50/125	0,2	2,7	5,6	700 m (2300 ft)					
62,5/125	0,275	3,2	9,4	1800 m (5900 ft)					
100/140	0,3	4 14,9 2800 m (9200 f							
200 (HCS)	0,37	6	19,2	2600 m (8500 ft)					

Fiber optic Ethernet network for the ACE850FO communication interface

Fiber optic communication port

Fiber type		Multimode			
Wavelength		1300 nm			
Type of conne	ctor	SC			
Fiber optic diameter (µm)	Minimum optical power TX (dBm)	Maximum optical power TX (dBm)	Sensitivity RX (dBm)	Saturation RX (dBm)	Maximum distance
50/125	-22,5	-14	-33,9	-14	2 km (1,24 mi)
62,5/125	-19	-14	-33,9	-14	2 km (1,24 mi)

Wired Ethernet network for the ACE850TP communication interface

Wired communication port						
Type of connector	Data	Medium	Maximum distance			
RJ45	10/100 Mbps	Cat 5 STP or FTP or SFTP	100 m (328 ft)			

Communication interfaces

ACE949-2 2-wire RS 485 network interface

ACE949-2 2-wire RS 485 network connection interface.

(1) 70 mm (2.8 in) with CCA612 cord connected.

Function

The ACE949-2 interface performs 2 functions:

- Electrical interface between Sepam and a 2-wire RS 485 communication network
- Main network cable branching box for the connection of a Sepam with a CCA612 cord.

Characteristics

ACE949-2 module				
Weight		0.1 kg (0.22 lb)		
Assembly		On symmetrical DIN rail		
Operating temperature		-25°C to +70°C (-13°F to	+158°F)	
Environmental characteristics		Same characteristics as S	Sepam base units	
2-wire RS 485 elect	trical	interface		
Standard		EIA 2-wire RS 485 differe	ntial	
Distributed power supply		External, 12 V DC or 24 V DC ±10%		
Power consumption		16 mA in receiving mode		
		40 mA maximum in sending mode		
Maximum length o	f 2-w	re RS 485 network		
with standard cabl	е			
Number of Sepam units	Maximum length with 12 V DC power supply		Maximum length with 24 V DC power supply	
5	320 m (1000 ft)		1000 m (3300 ft)	
10	180 m (590 ft)		750 m (2500 ft)	
20	160 m	(520 ft)	450 m (1500 ft)	
25	125 m	(410 ft)	375 m (1200 ft)	

Description and dimensions

- (A) and (B) Terminal blocks for network cable
- (C)RJ45 socket to connect the interface to the base unit with a CCA612 cord
- (+) Grounding/earthing terminal
- 1 Link activity LED, flashes when communication is active (sending or receiving in progress).
- 2 Jumper for RS 485 network line-end impedance matching with load resistor $(Rc = 150 \Omega)$, to be set to:
 - R, if the module is not at one end of the network (default position) Rc, if the module is at one end of the network.
- 3 Network cable clamps (inner diameter of clamp = 6 mm or 0.24 in).

Connection

- Connection of network cable to screw-type terminal blocks (A) and (B)
- Connection of the earthing terminal by tinned copper braid with

cross-section $\ge 6 \text{ mm}^2$ (AWG 10) or cable with cross-section $\ge 2.5 \text{ mm}^2$ (AWG 12) and length \leq 200 mm (7.9 in), fitted with a 4 mm (0.16 in) ring lug. Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).

The interfaces are fitted with clamps to hold the network cable and recover shielding at the incoming and outgoing points of the network cable: □ the network cable must be stripped

- □ the cable shielding braid must be around and in contact with the clamp
- The interface is to be connected to connector (C) on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, white fittings)
- The interfaces are to be supplied with 12 V DC or 24 V DC.

ACE959 4-wire RS 485 network interface

ACE959 4-wire RS 485 network connection interface.

(1) 70 mm (2.8 in) with CCA612 cord connected.

(1) Distributed power supply with separate wiring or included in the shielded cable (3 pairs).

(2) Terminal block for connection of the distributed power supply module.

Function

cord

The ACE959 interface performs 2 functions:

Electrical interface between Sepam and a 4-wire RS 485 communication network
 Main network cable branching box for the connection of a Sepam with a CCA612

Characteristics

ACE959 module				
Weight		0.2 kg (0.441 lb)		
Assembly		On symmetrical DI	N rail	
Operating temperature		-25°C to +70°C (-13	3°F to +158°F)	
Environmental characteristics		Same characteristic	cs as Sepam base units	
4-wire RS 485 elec	trical inte	rface		
Standard		EIA4-wire RS 485 differential		
Distributed power supply		External, 12 V DC or 24 V DC ±10%		
Power consumption		16 mA in receiving mode		
		40 mA maximum in sending mode		
Maximum length of 4-wire RS 485 network with standard cable				
Manualsan		La constitución de la	Manufacture I and add a state	

Number of Sepam units	Maximum length with 12 V DC power supply	Maximum length with 24 V DC power supply	
5	320 m (1000 ft)	1000 m (3300 ft)	
10	180 m (590 ft)	750 m (2500 ft)	
20	160 m (520 ft)	450 m (1500 ft)	
25	125 m (410 ft)	375 m (1200 ft)	

Description and dimensions

(A) and (B) Terminal blocks for network cable

- CRJ45 socket to connect the interface to the base unit with a CCA612 cord
- D Terminal block for a separate auxiliary power supply (12 V DC or 24 V DC)
- Erounding/earthing terminal
- 1 Link activity LED, flashes when communication is active (sending or receiving in progress).
- 2 Jumper for 4-wire RS 485 network line-end impedance matching with load resistor (Rc = 150 Ω), to be set to:
 - R, if the module is not at one end of the network (default position)
 - Rc, if the module is at one end of the network.
- 3 Network cable clamps (inner diameter of clamp = 6 mm or 0.24 in).

Connection

Connection of network cable to screw-type terminal blocks (A) and (B)

■ Connection of the earthing terminal by tinned copper braid with cross-section $\ge 6 \text{ mm}^2$ (AWG 10) or cable with cross-section $\ge 2.5 \text{ mm}^2$ (AWG 12) and length $\le 200 \text{ mm}$ (7.9 in), fitted with a 4 mm (0.16 in) ring lug. Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).

- The interfaces are fitted with clamps to hold the network cable and recover
- shielding at the incoming and outgoing points of the network cable:
- □ the cable shielding braid must be around and in contact with the clamp

■ The interface is to be connected to connector (C) on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, white fittings)

- The interfaces are to be supplied with 12 V DC or 24 V DC
- The ACE959 can be connected to a separate distributed power supply (not

included in shielded cable). Terminal block D is used to connect the distributed power supply module.

238

ACE937 Fiber optic interface

ACE937 fiber optic connection interface

HAZARD OF BLINDING Never look directly into the end of the fiber optic. Failure to follow this instruction can cause serious injury.

Function

The ACE937 interface is used to connect Sepam to a fiber optic communication star system.

This remote module is connected to the Sepam base unit by a CCA612 cord.

Characteristics

ACE937 mc	odule			
Weight		0.1 kg (0.22 lb)		
Assembly		On symmetrical DIN rail		
Power supply		Supplied by Sepam		
Operating tempera	ature	-25°C to +70°C (-13°F to +158°F)		
Environmental cha	aracteristics	Same characteristics as Sepam base units		
Fiber optic	interface			
Fiber type		Graded-index multimode silica		
Wavelength		820 nm (invisible infra-red)		
Type of connector		ST (BFOC baye	onet fiber optic connecto	or)
Fiber optic diameter (µm)	Numerical aperture (NA)	Maximum attenuation (dBm/km)Minimum optical power available (dBm)Maximum fiber length		
50/125	0.2	2.7	5.6	700 m (2300 ft)
62.5/125	0.275	3.2	9.4	1800 m (5900 ft)
100/140	0.3	4	14.9	2800 m (9200 ft)
200 (HCS)	0.37	6	19.2	2600 m (8500 ft)

Maximum length calculated with:

Minimum optical power available

Maximum fiber attenuation

■ Losses in 2 ST connectors: 0.6 dBm

Optical power margin: 3 dBm (according to IEC 60870 standard).

Example for a 62.5/125 µm fiber

Lmax = (9.4 - 3 - 0.6)/3.2 = 1.8 km (1.12 mi)

Description and dimensions

(C) RJ45 socket to connect the interface to the base unit with a CCA612 cord.

- 1 Link activity LED. flashes when communication is active (sending or receiving in progress).
- 2 Rx, female ST type connector (Sepam receiving). 3 Tx, female ST type connector (Sepam sending).

(C) mm 88 3.46 3 30⁽¹⁾ 1.81 72 283

DE88272

DF88273

(1) 70 mm (2.8 in) with CCA612 cord connected.

Connection

■ The sending and receiving fiber optic fibers must be equipped with male ST type connectors

■ Fiber optics screw-locked to Rx and Tx connectors.

The interface is to be connected to connector (C) on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, white fittings).

239

ACE969TP-2 and ACE969FO-2 Network interfaces

ACE969TP-2 communication interface.

ACE969F0-2

ACE969FO-2 communication interface.

ACE969TP-2 and ACE969FO-2

Function

The ACE969 multi-protocol communication interfaces are for Sepam series 20, Sepam series 40, Sepam series 60 and Sepam series 80.

They have two communication ports to connect a Sepam to two independent communication networks:

The S-LAN (Supervisory Local Area Network) port is used to connect Sepam to a communication network dedicated to supervision, using one of the three following protocols:

. IEC 60870-5-103

DNP3

□ Modbus RTU.

The communication protocol is selected at the time of Sepam parameter setting. The E-LAN (Engineering Local Area Network) port, reserved for Sepam remote parameter setting and operation using the SFT2841 software.

There are two versions of the ACE969 interfaces, which are identical except for the S-LAN port:

■ ACE969TP-2 (Twisted Pair), for connection to an S-LAN network using a 2-wire RS 485 serial link

■ ACE969FO-2 (Fiber Optic), for connection to an S-LAN network using a fiber-optic connection (star or ring).

The E-LAN port is always a 2-wire RS485 type port.

ACE969TP-2 and ACE969FO-2 network interfaces

Characte	ristics					
ACE969TP-	2 and ACE96	9FO-2 modul	е			
Technical char	acteristics					
Weight		0.285 kg (0.628 lb)				
Assembly		On symmetrical D	IN rail			
Operating temperat	ture	-25°C to +70°C (-1	3°F to +1	58°F)		
Environmental char	acteristics	Same characterist	tics as Sep	oam base	units	
Power supply						
Voltage		24 to 250 V DC		110 to 24	10 V AC	
Range		-20%/+10%		-20%/+1	0%	
Maximum consump	otion	2 W		3 VA		
Inrush current		< 10 A 100 µs				
Acceptable ripple c	ontent	12%				
Acceptable momentary outages 20 ms						
2-wire RS 48	8 <mark>5 co</mark> mmunio	ation ports				
Electrical inter	face					
Standard		EIA 2-wire RS 485 differential				
Distributed power s	upply	ACE969-2 not req	uired (buil	t-in)		
Fiber optic of	communicati	on port				
Fiber optic inte	erface					
Fiber type		Graded-index mul	timode sili	са		
Wavelength		820 nm (invisible i	nfra-red)			
Type of connector		ST (BFOC bayone	et fiber opt	ic connec	tor)	
Maximum leng	th of fiber optic	network				
Fiber diameter (µm)	Numerical aperture (NA)	Attenuation (dBm/km)	Minimur optical p available (dBm)	n oower e	Maximum fiber length	
50/125	0.2	2.7	5.6		700 m (2300 ft)	
62.5/125	0.275	3.2	9.4		1800 m (5900 ft)	
100/140	0.3	4	14.9		2800 m (9200 ft)	
200 (HCS)	0.37	6	19.2		2600 m (8500 ft)	

Maximum length calculated with:

Minimum optical power available

Maximum fiber attenuation

Losses in 2 ST connectors: 0.6 dBm

Optical power margin: 3 dBm (according to IEC 60870 standard).

Example for a 62.5/125 µm fiber

Lmax = (9.4 - 3 - 0.6)/3.2 = 1.8 km (1.12 mi).

Dimensions

ACE969TP-2 and ACE969FO-2 network interfaces

Description

ACE969-2 communication interfaces

2-wire RS485 communication ports

S-LAN port (ACE969TP)

E-LAN port (ACE969TP or ACE969FO)

6

Fiber-optic communication port

S-LAN port (ACE969FO)

- 1 Grounding/earthing terminal using supplied braid
- 2 Power-supply terminal block
- **3** RJ45 connector to connect the interface to the base unit with a CCA612 cord
- 4 Green LED: ACE969-2 energized
- 5 Red LED: ACE969-2 interface status
 LED off = ACE969-2 set up and communication operational
 LED flashing = ACE969-2 not set up or setup incorrect
- LED remains on = ACE969-2 has faulted
- 6 Service connector: reserved for software upgrades
- 7 E-LAN 2-wire RS485 communication port (ACE969TP-2 and ACE969FO-2)
- 8 S-LAN 2-wire RS485 communication port (ACE969TP-2)
- 9 S-LAN fiber-optic communication port (ACE969FO-2).
- Draw-out terminal block, with two rows of connections to the RS485 2-wire network:
 2 black terminals: connection of RS485 twisted-pair (2 wires)
 - 2 green terminals: connection of twisted-pair for distributed power supply
- Indication LEDs:
 flashing Tx LED: Sepam sending
 flashing Rx LED: Sepam receiving.
- Jumper for RS485 network line-end impedance matching with load resistor (Rc = 150 Ω), to be set to:
 Rc, if the interface is not at the line end (default
 - position) Rc, if the interface is at the line end.

- 1 Indication LEDs: ■ flashing Tx LED: Sepam sending
- flashing Rx LED: Sepam receiving.
- 2 Rx, female ST-type connector (Sepam receiving)
- 3 Tx, female ST-type connector (Sepam sending).

ACE969TP-2 and ACE969FO-2 network interfaces

Connection

Power supply and Sepam

- The ACE969-2 interface connects to connector C on the Sepam base unit using
- a CCA612 cord (length = 3 m or 9.84 ft, white RJ45 fittings)
- The ACE969-2 interface must be supplied with 24 to 250 V DC or 110 to 240 V AC.

- HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS
- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding. Always use a properly rated voltage sensing device to confirm that all power
- is off.
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Communication interfaces

ACE969TP-2 and ACE969FO-2 network interfaces

Connection

If ACE969TP and ACE969TP-2 are used together, the external power supply is required.

If ACE969TP-2 is used alone, the external power supply is not required, the V- connectors on the modules must be interconnected.

2-wire RS 485 communication ports (S-LAN or E-LAN)

- Connection of the RS 485 twisted pair (S-LAN or E-LAN) to terminals A and B.
- In case of ACE 969TP wired with ACE969TP-2:
- □ connection of twisted pair for distributed power supply to terminals 5(V+) et 4(V-).
- In case of ACE969TP-2 only:
- □ connexion only on the terminal 4(V-) (ground continuity)
- □ no need of external power supply.
- The cable shields must be connected to the terminals marked 3(.) on the connection terminal blocks.

■ Terminal marked 3(.) are linked by an internal connection to the earthing terminals of the ACETP-2 interface (protective an functional earthing): le the shielding of the RS 485 cables is earthed as well.

■ On the ACE960TP-2 interface, the cable clamps for the S-LAN and E-LAN RS 485 networks are earthed by the terminal 3.

Fiber optic communication port

The sending and receiving fiber optic fibers must be equipped with male ST type connectors. The fiber optics are screw-locked to Rx and Tx connectors.

DERR 288

ACE850TP and ACE850FO network interfaces

ACE850TP communication interface.

ACE850FO communication interface.

ACE850TP and ACE850FO

Function

ACE850 multi-protocol communication interfaces are for Sepam series 40 and Sepam series 80 units.

They have two Ethernet communication ports to connect a Sepam unit to a single Ethernet network depending on the topology (star or ring):

For a star topology, only one communication port is used.

For a ring topology, both Ethernet communication ports are used to provide redundancy. This redundancy conforms to the RSTP 802.1d 2004 standard.

Either port can be used for connection:

To the S-LAN (Supervisory Local Area Network) port to connect a Sepam unit to an Ethernet communication network dedicated to supervision, using either of the following protocols:

□ IEC 61850

□ eModbus TCP/IP TRA 15.

To the E-LAN (Engineering Local Area Network) port, reserved for remote parameter setting and operation of a Sepam unit using SFT2841 software.

There are two versions of the ACE850 interface, which are identical except for the type of port featured:

 ACE850TP (Twisted Pair), for connection to an Ethernet network (S-LAN or E-LAN) using a copper RJ45 10/100 Base TX Ethernet link.

■ ACE850FO (Fiber Optic), for connection to an Ethernet network (S-LAN or E-LAN) using a 100Base FX fiber optic connection (star or ring).

Compatible Sepam units The ACE850TP and ACE850FO multi-protocol interfaces are compatible with the following Sepam units:

- Sepam series 40, series 60 version ≥ V7.00
- Sepam series 80 base version and application version ≥ V6.00.

ACE850TP and ACE850FO network interfaces

Characteristics

Technical o						
rechilled C	haracteristics		e nicu			
Woight	Indiduceristics		0.4 kg (0.9			
Vveignt			0,4 kg (0.88 lb)			
Assembly				etrical DIN rail	1.150%5	
Operating temp	perature		-25°C to +	10°C (-13°F to	+158°F)	unita
Environmental	characteristics		Same cha	racteristics as	Sepam base u	units
Power sup	ply					
Voltage			24 to 250	VCC	110 to 24	0 V CA
Range			-20 % / +1	0 %	-20 % / +2	10 %
Maximum	ACE850TP	3,5 W in C	C	1,5 VA in	CA	
consumption ACE850FO			6,5 W in C	C	2,5 VA in	CA
Inrush current			< 10 A 10 I	ms in CC	< 15 A 10	ms in CA
Acceptable ripple content			12 %			
Acceptable mo	mentary outages		100 ms			
Wired Et	hernet comi	mun	ication	ports (AC	E850TP)	
Number of port	ts		2 x RJ45 p	orts	/	
Type of port			10/100 Ba	ise TX		
Protocols			HTTP. FT	P, SNMP. SNT	P, ARP, SFT. C	EI61850. TCP/
			IP, RSTP	301.1d 2004	, ,, c	
Baud rate			10 or 100	Mbits/s		
Medium			CAT 5 STI	P or FTP or SF	TP	
Maximum dista	ance		100 m (32	8 ft)		
Fiber opt	tic Ethernet	con	munica	ation port	s (ACE85	0FO)
Number of port	te		2			
Type of port			- 100 Raso	FX		
Protocole			HTTP ET			FI61850 TCP/
1 10100015			IP. RSTP	301.1d 2004	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Baud rate			100 Mbits	/s		
Fiber type			Multimode			
Wavelength			1300 nm	-		
Type of connec	ctor		SC			
Maximum	enath of fiber c	ontic	network			
Fiber ontic	Minimum	May	imum	Sensitivity	Saturation	Maximum
diameter (µm)	optical power Tx (dBm)	opti pow	cal ver Tx	RX (dBm)	RX (dBm)	distance
		(ав	m)			
50/125	-22 5	(UD	m)	-33.9	-14	2 km (1 24 mi)
50/125 62,5/125	-22,5 -19	-14 -14	m)	-33,9 -33,9	-14 -14	2 km (1.24 mi) 2 km (1.24 mi)
50/125 62,5/125 Dimens	-22,5 -19 Sions		m)	-33,9 -33,9 108 4.25 127,2 5		2 km (1.24 mi) 2 km (1.24 mi)

ACE850TP and ACE850FO network interfaces

Connection

ACE850TP: View of underside

ACE850FO: Front view

ACE850FO: View of underside

ACE850TP communication interfaces

- 1 ACE850 communication interface status LED
 - LED off = ACE850 de-energized
 - Green LED permanently on = ACE850 energized and operational
 - Red LED flashing = ACE850 not configured and/or not connected to the base unit
 - Red LED permanently on = ACE850 not operational (initialization in progress or failed)
- 2 STS LED: communication status: green permanently on = OK
- 3 Ethernet Port 2 100 green LED: off = 10Mbps, permanently on = 100 Mbps
- 4 Ethernet Port 2 activity LED: flashing on transmission/reception
- 5 Ethernet Port 2 100 green LED: off = 10Mbps, permanently on = 100 Mbps
- 6 Ethernet Port 1 activity LED: flashing on transmission/reception
- 7 Power-supply terminal block
- 8 Grounding/earthing terminal using supplied braid
 9 B.145 socket to connect the interface to the Senan
- RJ45 socket to connect the interface to the Sepam base unit with a CCA614 cord : ■ Sepam series 40: communication port ⓒ (identified by a white label on the Sepam unit)
- Sepam series 80: port (F) (identified by a blue label on the Sepam unit)
- 10 RJ45 10/100 Base TX Ethernet communication port P2 (E-LAN or S-LAN)
- 11 RJ45 10/100 Base TX Ethernet communication port P1 (E-LAN or S-LAN)

ACE850FO communication interfaces

- 1 ACE850 communication interface status LED
 - LED off = ACE850 de-energized
 - Green LED permanently on = ACE850 energized and operational
 - Red LED flashing = ACÉ850 not configured and/or not connected to the base unit
 - Red LED permanently on = ACE850 not operational (initialization in progress or failed)
- 2 STS LED: communication status: green permanently on = OK
- 3 Ethernet Port 2 100 green LED: permanently on = 100 Mbps
- 4 Ethernet Port 2 activity LED: flashing on transmission/reception
- 5 Ethernet Port 2 100 green LED: permanently on = 100 Mbps
- 6 Ethernet Port 1 activity LED: flashing on transmission/reception
- 7 Power-supply terminal block
- 8 Grounding/earthing terminal using supplied braid
- 9 RJ45 socket to connect the interface to the Sepam base unit with a CCA614 cord :
 Sepam series 40: communication port C (identified by a white label on the Sepam unit)
- Sepam series 80: port (F) (identified by a blue label on the Sepam unit) 12 Tx fiber of 100 Base FX SC connector for Ethernet communication port P2 (E-LAN or S-LAN)
- (E-LAN or S-LAN)
- 13 Rx fiber of 100 Base FX SC connector for Ethernet communication port P2 (E-LAN or S-LAN)
- 14 Tx fiber of 100 Base FX SC connector for Ethernet communication port P1 (E-LAN or S-LAN)
- **15** Rx fiber of 100 Base FX SC connector for Ethernet communication port P1 (E-LAN or S-LAN)

HAZARD OF BLINDING

Never look directly into the fiber optic.

Failure to follow this instruction can cause serious injury.

247

ACE850TP and ACE850FO network interfaces

Connection

Connecting the ACE850 to a Sepam series 60 and series 80.

. C1C2 F

D1

D2

CCA614

ACE909-2 RS 232 / RS 485 converter

Function

The ACE909-2 converter is used to connect a master/central computer equipped with a V24/RS 232 type serial port as a standard feature to stations connected to a 2-wire RS 485 network.

Without requiring any flow control signals, after the parameters are set, the ACE909-2 converter performs conversion, network polarization and automatic dispatching of frames between the master and the stations by two-way simplex (half-duplex, single-pair) transmission.

The ACE909-2 converter also provides a 12 V DC or 24 V DC supply for the distributed power supply of the Sepam ACE949-2, ACE959 or ACE969 interfaces. The communication settings should be the same as the Sepam and supervisor communication settings.

ACE909-2 RS 232/RS 485 converter.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.

Always use a properly rated voltage sensing device to confirm that all power is off.

Start by connecting the device to the protective earth and to the functional earth.

 Screw tight all terminals, even those not in use.
 Failure to follow these instructions will result in death or serious injury.

Characteristics

Mechanical characteristics			
Weight	0.280 kg (0.617 lb)		
Assembly	On symmetrical of	or asymmetrical DIN rail	
Electrical characteristics			
Power supply	110 to 220 V AC :	± 10%, 47 to 63 Hz	
Galvanic isolation between ACE power supply and frame, and between ACE power supply and interface supply	2000 Vrms, 50 H	z, 1 min	
Galvanic isolation between RS 232 and RS 485 interfaces	1000 Vrms, 50 H	z, 1 min	
Protection by time-delayed fuse 5 mm x 20 mm (0.2 in x 0.79 in)	1 A rating		
Communication and Sepam inte	erface distri	buted supply	
Data format	11 bits: 1 start, 8 data, 1 parity, 1 stop		
Transmission delay	< 100 ns		
Distributed power supply for Sepam interfaces	12 V DC or 24 V DC, 250 mA max		
Maximum number of Sepam interfaces with distributed supply	12		
Environmental characteristics			
Operating temperature	-5°C to +55°C (+2	23°F to +131°F)	
Electromagnetic compatibility	IEC	Value	
	standard		
Fast transient bursts, 5 ns	60255-22-4	4 kV with capacitive coupling in common mode 2 kV with direct coupling in common mode 1 kV with direct coupling in differential mode	
1 MHz damped oscillating wave	60255-22-1	1 kV common mode 0.5 kV differential mode	
1.2/50 μs impulse waves	60255-5	3 kV common mode 1 kV differential mode	

ACE909-2 RS 232 / RS 485 converter

Male 9-pin sub-D connector supplied with the ACE909-2.

Description and dimensions

- (A) Terminal block for RS 232 link limited to 10 m (33 ft).
- (B) Female 9-pin sub-D connector to connect to the 2-wire RS 485 network, with distributed power supply.
- 1 screw-type male 9-pin sub-D connector is supplied with the converter. C Power-supply terminal block
- Distributed power supply voltage selector switch, 12 V DC or 24 V DC. 1
- Protection fuse, unlocked by a 1/4 turn. 2
- 3 LEDs:
 - ON/OFF: on if ACE909-2 is energized
 - Tx: on if RS 232 sending by ACE909-2 is active
 - Rx: on if RS 232 receiving by ACE909-2 is active.
- SW1, parameter setting of 2-wire RS 485 network polarization and 4 line impedance matching resistors.

Function	SW1/1	SW1/2	SW1/3
Polarization at 0 V via Rp -470 Ω	ON		
Polarization at 5 V via Rp +470 Ω		ON	
2-wire RS 485 network impedance matching by 150 Ω resistor			ON

5 SW2, parameter setting of asynchronous data transmission rate and format (same parameters as for RS 232 link and 2-wire RS 485 network)

Rate (bauds)	SW2/1	SW2/2	SW2/3		
1200	1	1	1		
2400	0	1	1		
4800	1	0	1		
9600	0	0	1		
19200	1	1	0		
38400	0	1	0		
Format				SW2/4	SW2/5
With parity check				0	
Without parity check				1	
1 stop bit (compulsory for Sepam)					1
2 stop bits					0

Converter configuration when delivered

- 12 V DC distributed power supply
- 11-bit format, with parity check
- 2-wire RS 485 network polarization and impedance matching resistors activated.

Connection

RS 232 link

- To 2.5 mm² (AWG 12) screw type terminal block (A)
- Maximum length 10 m (33 ft)
- Rx/Tx: RS 232 receiving/sending by ACE909-2
- 0V: Rx/Tx common, do not earth.

2-wire RS 485 link with distributed power supply

- To connector (B) female 9-pin sub-D
- 2-wire RS 485 signals: L+, L-
- Distributed power supply: V+ = 12 V DC or 24 V DC, V- = 0 V.

Power supply

- To 2.5 mm² (AWG 12) screw type terminal block C
- Reversible phase and neutral
- Earthed via terminal block and metal case (ring lug on back of case).

ACE919CA and ACE919CC RS485/RS485 converters

Function

The ACE919 converters are used to connect a master/central computer equipped with an RS 485 type serial port as a standard feature to stations connected to a 2-wire RS 485 network.

Without requiring any flow control signals, the ACE919 converters perform network polarization and impedance matching.

The ACE919 converters also provide a 12 V DC or 24 V DC supply for the distributed power supply of the Sepam ACE949-2, ACE959 or ACE969 interfaces.

There are 2 types of ACE919 converter:

- ACE919CC, DC-powered
- ACE919CA, AC-powered.

ACE919CC RS 485/RS 485 converter.

HAZARD OF ELECTRIC SHOCK, ELECTRIC **ARC OR BURNS**

 Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.

Always use a properly rated voltage sensing device to confirm that all power is off.

Start by connecting the device to the

protective earth and to the functional earth. Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Characteristics

Mechanical characteristics

meenamear enaracteristics				
Weight	0.280 kg (0.617 lb)			
Assembly	On symmetrical or asy	mmetrical DIN rail		
Electrical characteristics	ACE919CA	ACE919CC		
Power supply	110 to 220 V AC ±10%, 47 to 63 Hz	24 to 48 V DC ±20%		
Protection by time-delayed fuse 5 mm x 20 mm (0.2 in x 0.79 in)	1 A rating	1 A rating		
Galvanic isolation between ACE power supply and frame, and between ACE power supply and interface supply		2000 Vrms, 50 Hz, 1 min		
Communication and Sepam inte	erface distribute	ed supply		
Data format	11 bits: 1 start, 8 data,	1 parity, 1 stop		
Transmission delay	< 100 ns			
Distributed power supply for Sepam interfaces	12 V DC or 24 V DC, 250 mA max			
Maximum number of Sepam interfaces with distributed supply	12			
Environmental characteristics				
Operating temperature	-5°C to +55°C (+23°F	to +131°F)		
Electromagnetic compatibility	IEC standard	Value		
Fast transient bursts, 5 ns	60255-22-4	4 kV with capacitive coupling in common mode 2 kV with direct coupling in common mode 1 kV with direct coupling in differential mode		
1 MHz damped oscillating wave	60255-22-1	1 kV common mode 0.5 kV differential mode		
1.2/50 μs impulse waves	60255-5	3 kV common mode 1 kV differential mode		

ACE919CA and ACE919CC RS 485 / RS 485 converters

Male 9-pin sub-D connector supplied with the ACE919.

Description and dimensions

- (A) Terminal block for 2-wire RS 485 link without distributed power supply.
- B Female 9-pin sub-D connector to connect to the 2-wire RS 485 network, with distributed power supply.
- 1 screw-type male 9-pin sub-D connector is supplied with the converter. (C) Power supply terminal block.
- 1 Distributed power supply voltage selector switch, 12 V DC or 24 V DC.
- 2 Protection fuse, unlocked by a 1/4 turn.
- 3 ON/OFF LED: on if ACE919 is energized.
- 4 SW1, parameter setting of 2-wire RS 485 network polarization and line impedance matching resistors.

Function	SW1/1	SW1/2	SW1/3
Polarization at 0 V via Rp -470 Ω	ON		
Polarization at 5 V via Rp +470 Ω		ON	
2-wire RS 485 network impedance matching by 150Ω resistor			ON

Converter configuration when delivered

- 12 V DC distributed power supply
- 2-wire RS 485 network polarization and impedance matching resistors activated.

Connection

- 2-wire RS 485 link without distributed power supply
- To 2.5 mm² (AWG 12) screw type terminal block (A)
- L+, L-: 2-wire RS 485 signals
- ÷ Shielding.
- 2-wire RS 485 link with distributed power supply
- To connector (B) female 9-pin sub-D
- 2-wire RS 485 signals: L+, L-
- Distributed power supply: V+ = 12 V DC or 24 V DC, V- = 0 V.

Power supply

- To 2.5 mm² (AWG 12) screw type terminal block (C)
- Reversible phase and neutral (ACE919CA)
- Earthed via terminal block and metal case (ring lug on back of case).

Sepam ECI850 server for IEC 61850.

Function

The ECI850 connects Sepam series 20, Sepam series 40 and Sepam series 80 units to an Ethernet network using the IEC 61850 protocol.

It acts as the interface between the Ethernet/IEC 61850 network and a Sepam RS485/Modbus network.

1 PRI surge arrester (cat. no. 16339) is supplied with the ECI850 to protect its power supply.

Characteristics

ECI850 module	
Technical characteristics	
Weight	0.17 kg (0,37 lb)
Assembly	On symmetrical DIN rail
Power supply	
Voltage	24 V DC (± 10 %) supplied by a class 2 supply
Maximum consumption	4 W
Dielectric strength	1.5 kV
Environmental characteristi	cs
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)
Storage temperature	-40 °C to +85 °C (-40 °F to +185 °F)
Relative humidity	5 to 95 % (without condensation) at +55 °C (131 °F)
Pollution degree	Class 2
Degree of protection	IP30
Electromagnetic compatibility	ity
Emission tests	
Emission (radiated and conducted)	EN 55022/EN 55011/FCC Class A
Immunity tests – Radiated disturba	nces
Electrostatic discharge	EN 61000-4-2
Radiated radio-frequency fields	EN 61000-4-3
Magnetic fields at power frequency	EN 61000-4-8
Immunity tests – Conducted distur	bances
Fast transient bursts	EN 61000-4-4
Surges	EN 61000-4-5
Conducted disturbances, induced by radio- frequency fields	EN 61000-4-6
Safety	
International	IEC 60950
United States	UL 508/UL 60950
Canada	cUL (in compliance with CSA C22.2, no. 60950)
Australia / New Zealand	AS/NZS 60950
Certification	
Europe	CE
2-wire/4-wire RS485 commu	nication ports
Electrical interface	· · · · · · · · · · · · · · · · · · ·
Standard	EIA 2-wire/4-wire RS485 differential
Max. number of Sepam units per ECI850	2 Sepam series 60 and series 80 or 3 Sepam series 40 or 5 Sepam series 20
Maximum length of 2-wire/4-wire R	S485 network
Maximum length of network	1000 m (3300 ft)
Ethernet communication po	rt
Number of ports	1
Type of port	10/100 Base Tx
Protocols	HTTP, FTP, SNMP, SNTP, ARP, SFT, IEC 61850 TCP/IP
Transmission rate	10/100 Mbits/s

Compatibility An ECI850 module can be used on the following Sepam base units, starting from indicated versions:

- base S20: V0526
- base S40: V3.0
- base S60: V1.00
- base S80: V3.0

5

Characteristics (cont.)

PRI surge arrester	
Electrical characteristics	
Utilisation voltage	48 VDC
Full discharge current	10 kA (8/20 µs wave)
Rated discharge current	5 kA (8/20 µs wave)
Level of protection	70 V
Response time	< 1 ns
Connection	
Tunnel terminals	Wires with maximum cross-section of 2.5 mm ² to 4 mm ² (AWG 12-10)

Description

1 2 3 4 5 6 7 8

RS485 network setup

The RS485 setup switches are used to select the network-polarisation (bias) and line-impedance matching resistors and the type of RS485 network (2-wire/4-wire). The default settings are for a 2-wire RS485 with network-polarization and lineimpedance matching resistors.

Line-impedance matching using resistors	SW1	SW2	SW3	SW4	SW5	SW6
2-wire RS485	OFF	ON				
4-wire RS485	ON	ON				
Polarisation (bias)	SW1	SW2	SW3	SW4	SW5	SW6
at 0 V			ON			
at 5 V				ON		
RS485 network type	SW1	SW2	SW3	SW4	SW5	SW6
2-wire					ON	ON
4-wire					OFF	OFF
				-		-

Ethernet link set-up

The TCSEAK0100 configuration kit can be used to connect a PC to the ECI850 to set up the Ethernet link.

- 1 1 / ↓ LED: Power on and maintenance 2 Serial-link LEDs:
- RS485 LED: link to network activated □ On: RS485 mode
- □ Off: RS232 mode
- flashing TX LED: ECI850 sending ■ flashing RX LED: ECI850 receiving
- 3 Ethernet LEDs:
 - green LK LED on: link to network activated flashing green Tx LED: ECI850 sending
 - flashing green Rx LED: ECI850 receiving
 - green 100 LED:
 - □ On: transmission rate = 100 Mbit/s
 - □ Off: transmission rate = 10 Mbit/s
- 4 10/100 Base Tx port for Ethernet connection via RJ45 connector
- 24 V DC connection 5
- Reset button 6
- 7 RS485 connector
- 8 RS485 setup switches
- 9 RS232 connector

RS485 network setup.

Dimensions

CAUTION

TO AVOID DAMAGING THE ECI850

Connect the PRI surge arrester as indicated in the diagrams below.

Check the quality of the earthing conductors connected to the surge arresters.

The equipment may be damaged if these instructions are not followed.

Connection

- Connect the supply and the RS485 twisted pair using the ≤ 2.5 mm² cable (≥AWG 12)
- Connect the 24 V DC supply and earth to inputs 1, 5 and 3 on the PRI surge arresters supplied with the ECI850.
- Connect outputs 2 and 6 of PRI surge arresters (cat. no. 16595) to the and + terminals on the terminal block with black screws.
- Connect the RS485 twisted pair (2 or 4 wires) to the terminals (RX+ RX- or RX+ RX-TX+TX-) on the terminal block with black screws.
- \blacksquare Connect the shielding of the RS485 twisted pair to the \leftrightarrow terminal on the terminal block with black screws.
- Connect the Ethernet cable to the green RJ45 connector.

2-wire RS485 network

DE80447

Architecture example The diagrams below show two examples of communication architectures using the ECI850.

Note: Rc = line-impedance matching resistor.

The maximum Sepam configuration for a Sepam IEC 61850 level 1 server is: 2 Sepam series 60 and series 80 units or 3 Sepam series 40 units or 5 Sepam series 20 units.

PowerLogic EGX100

Ethernet gateway

PowerLogic EGX100

Function

The EGX100 serves as an Ethernet gateway for PowerLogic system devices and for any other communicating devices utilising the Modbus protocol. The EGX100 gateway offers complete access to status and measurement information provided by the connected devices via PowerLogic software installed on a PC.

PowerLogic software compatibility

PowerLogic software is recommeded as a user interface because they provide access to all status and measurement information. They also prepare summary reports. The EGX100 is compatible with:

- PowerLogic ION EEM enterprise energy management software
- PowerLogic ION Enterprise power management software
- PowerLogic System Manager power management software
- PowerLogic PowerView power monitoring software

Architecture

DE88422

Setup

Setup via an Ethernet network

Once connected to an Ethernet network, the EGX100 gateway can be accessed by a standard internet browser via its IP address to:

specify the IP address, subnet mask, and gateway address of the EGX gateway

- configure the serial port parameters (baud rate, parity, protocol, mode, physical interface, and timeout value)
- create user accounts
- create or update the list of the connected products with their Modbus or
- PowerLogic communication parameters
- configure IP filtering to control access to serial devices
- access Ethernet and serial port diagnostic data
- update the firmware.
- specify the user language.

Setup via a serial connection

Serial setup is carried out using a PC connected to the EGX100 via an RS232 link. This setup:

specifies the IP address, subnet mask, and gateway address of the EGX gateway
 specifies the language used for the setup session.

Part numbers

EGX100 EGX100	EGX100	
	EGX100	EGX100

257

PowerLogic EGX300

Integrated gateway-server

PowerLogic EGX300

Function

The EGX300 integrated gateway-server uses only a simple web browser and Ethernet network to access, log and display real-time data and trend plots from up to 64 PowerLogic system devices, including other gateway devices on the same network. The EGX300 embedded web page function and 512 Mb of onboard memory allow users to create pages for viewing data from their electrical system and store third-party web pages and documents such as instruction bulletins or equipment and system diagrams.

PowerLogic software compatibility

Combine the EGX300 with PowerLogic software for extensive analysis and additional functionality. The EGX300 is compatible with:

- PowerLogic ION EEM enterprise energy management software
- PowerLogic ION Enterprise power management software
- PowerLogic System Manager power management software
- PowerLogic PowerView power monitoring software

Architecture

Features

■ View real-time and historical information from multiple locations via any Microsoftcompatible web browser

- Automatically detect networked devices for easy setup
- Automatically email or FTP selected logged data to your PC for additional analysis
- Select the logging intervals and topics you want logged
 Ensures data and system security through password protection and controlled network access to individual web pages
- Simplifies installation by receiving control power through the Ethernet cable

utilising Power-over-Ethernet and offers the option to utilise 24 Vdc control power

Part numbers

LOXOU	
EGX300	EGX300

Ethernet EGX100 gateway Ethernet EGX300 server

- 5 Reset button.
- 6 RS485 connection.
 7 Dip switches for biasing, termination, and 2-wire/4-wire
- jumpers. 8 RS232 connection.

EGX300

Characteristics

	EGX100	EGX300
Weight	170 g	170 g
Dimensions (H x W x D)	91 x 72 x 68 mm	91 x 72 x 68 mm
Mounting	Din rail	Din rail
Power-over-Ethernet (PoE)	Class 3	Class 3
Power supply	24 V DC if not using PoE	24 V DC if not using PoE
Operating temperature	-25 to 70°C	-25 to 70°C
Humidity rating	5 % to 95 % relative humidity (without condensation) at +55 °C	5 % to 95 % relative humidity (without condensation) at +55 °C
Regulatory/standards c	ompliance for electromagn	etic interference
Emissions (radiated and	EN 55022/EN 55011/	EN 55022/EN 55011/
conducted)	FCC class A	FCC class A
Immunity for industrial environments:	EN 61000-6-2	EN 61000-6-2
- electrostatic discharge	EN 61000-4-2	EN 61000-4-2
- radiated RF	EN 61000-4-3	EN 61000-4-3
- electrical fast transients	EN 61000-4-4	EN 61000-4-4
- surge	EN 61000-4-5	EN 61000-4-5
- conducted RF	EN 61000-4-6	EN 61000-4-6
- power frequency magnetic field	EN 61000-4-8	EN 61000-4-8
Regulatory/standards c	ompliance for safety	
International (CB scheme)	IEC 60950	IEC 60950
USA	UL508/UL60950	UL508/UL60950
Canada	cUL (complies with CSA C22.2, no. 60950)	cUL (complies with CSA C22.2, no. 60950)
Europe	EN 60950	EN 60950
Australia/New Zealand	AS/NZS25 60950	AS/NZS 60950
Serial ports		
Number of ports	1	1
Types of ports	RS232 or RS485 (2-wire or 4-wire), depending on settings	RS232 or RS485 (2-wire or 4-wire), depending on settings
Protocol	Modbus RTU/ASCII PowerLogic [®] (SY/MAX), JBus	Modbus RTU/ASCII PowerLogic [®] (SY/MAX), JBus
Maximum baud rate	38400 or 57600 baud depending on settings	57600
Maximum number of directly connected devices	32	64
Ethernet port		
Number of ports	1	1
Types of ports	One 10/100 base TX (802.3af) port	One 10/100 base TX (802.3af) port
Protocol	HTTP, Modbus TCP/IP, FTP, SNMP (MIB II), SNTP, SMTP	HTTP, Modbus TCP/IP, FTP, SNMP (MIB II), SNTP, SMTP
Baud rate	10/100 MB	10/100 MB
Web server		
Memory for custom HTML pages	None	512 Mo

Installation

Selection guide

Phase current sensors

Two types of sensor may be used with Sepam to measure phase current:

- 1 A or 5 A current transformers
- LPCT (Low Power Current Transducer) type current sensors.

Selection guide

1 A or 5 A current sensors are:

- to be sized case by case: accuracy, electrical characteristics, etc.
- defined according to the IEC 60044-1 standard.

The LPCT type current sensors are:

■ simple to size: a given LPCT sensor is suitable for the measurement of different rated currents: for example, the CLP1 sensor measures rated currents of 25 to 1250 A

defined according to the IEC 60044-8 standard (rated secondary voltage = 22.5 mV).

Residual current sensors

The residual current value may be obtained using different sensors and assemblies, which are chosen according to the required performance (measurement accuracy and earth fault protection sensitivity).

- Residual current may be:
- measured by a specific CSH120 or CSH200 core balance CT

■ measured by a core balance CT with a ratio of 1/n (50 ≤ n ≤ 1500), with an ACE990 adapter.

calculated by Sepam from the vector sum of the 3 phase currents.

Selection guide

Measurement sensors	Accuracy	Recommended minimum set point	Easy assembly	
CSH120 or CSH200 core balance CT	***	>1A	*	
1 or 3 x 1 A or 5 A CT+ CSH30	**	0.10 InCT (DT) 0.05 InCT (IDMT)	**	
Core balance CT + ACE990	**	0.10 InCT (DT) 0.05 InCT (IDMT)	** revamping* new	
3 phase CT (I0 calculated by Sepam)	*	0.30 InCT (DT) ⁽¹⁾ 0.10 InCT (IDMT) ⁽¹⁾	***	

(1) Recommended minimum set point for ANSI 50N/51N function with H2 restraint: 0.10 InCT (DT) or 0.05 InCT (IDMT).

It is advisable not to set the earth fault protection functions below the recommended minimum set point to avoid any risk of unwanted tripping caused by oversensitive detection of residual current or false residual current due to the saturation of a CT. Lower settings may be used to trigger alarms.

Voltage transformers

VRQ3 without fuses.

VRQ3 with fuses.

Function

Sepam may be connected to any standard voltage transformer with a rated secondary voltage of 100 V to 220 V.

Schneider Electric offers a range of voltage transformers:

■ to measure phase-to-neutral voltages: voltage transformers with one insulated MV terminal

to measure phase-to-phase voltages: voltage transformers with two insulated MV terminals

with or without integrated protection fuses.

Consult us for more information.

Connection

The voltage transformers connect to Sepam:

directly, for Sepam series 40, Sepam series 60 and Sepam series 80

■ or via the CCT640 connector for Sepam B21, B22 and the additional voltage inputs for Sepam B83.

The table below presents the different connection possibilities for voltage transformers to Sepam.

	Sepam B21 and B22	Sepam series 40	Sepam series 60	Sepam series 80	
Number of voltage inputs	4	3	3	4 main	4 additional ⁽¹⁾
Intermediate connector	CCT640	-	-	-	CCT640
Sepam connector	В	E	E	E	B2

(1) Sepam B83 only.

■ when voltage transformers are connected directly to the E connector on Sepam, four transformers built into the Sepam base unit ensure matching and isolation between the VTs and the Sepam input circuits.

■ when voltage transformers are connected via the CCT640 connector, the four transformers for matching and isolation between the VTs and the Sepam input circuits are contained in the CCT640.

1A/5A current transformers

ARJA1.

FRADA

ARJP3.

Function

Sepam may be connected to any standard 1 A or 5 A current transformer. Schneider Electric offers a range of current transformers to measure primary currents from 50 A to 2500 A. Consult us for more information.

Sizing of current transformers

Current transformers are sized so as not to be saturated by the current values they are required to measure accurately (minimum 5 ln).

For overcurrent protection functions

with DT tripping curve:

the saturation current must be 1.5 times greater than the setting with IDMT tripping curve:

the saturation current must be 1.5 times greater than the highest working value on the curve.

Practical solution when there is no information on the settings

Rated secondary current (in)	Accuracy burden	Accuracy class	CT secondary resistance R _{ct}	Wiring resistance R _r
1A	2.5 VA	5P 20	< 3 Q	< 0.075 Ω
5A	7.5 VA	5P 20	< 0.2 Ω	< 0.075 Ω

1A/5A current transformers

CCA630/CCA634 connector

Function

The current transformers (1 A or 5 A) are connected to the CCA630 or CCA634 connector on the rear panel of Sepam:

The CCA630 connector is used to connect 3 phase current transformers to Sepam
 The CCA634 connector is used to connect 3 phase current transformers and a residual current transformer to Sepam.

The CCA630 and CCA634 connectors contain interposing ring CTs with through primaries, which ensure impedance matching and isolation between the 1 A or 5 A circuits and Sepam when measuring phase and residual currents. The connectors can be disconnected with the power on since disconnection does not open the CT secondary circuit.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

• Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

Turn off all power supplying this equipment before working on or inside it.

- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.

To remove current inputs to the Sepam unit, unplug the CCA630 or CCA634 connector without disconnecting the wires from it. The CCA630 and CCA634 connectors ensure continuity of the current transformer secondary circuits.
 Before disconnecting the wires connected to the CCA630 or CCA634

connector, short-circuit the current transformer secondary circuits.

Failure to follow these instructions will result in death or serious injury.

1A/5A current transformers

Connecting and assembling the CCA630 connector

1. Open the 2 side shields for access to the connection terminals. The shields can be removed, if necessary, to make wiring easier. If removed, they must be replaced after wiring.

2. If necessary, remove the bridging strap linking terminals 1, 2 and 3. This strap is supplied with the CCA630.

3. Connect the wires using 4 mm (0.16 in) ring lugs and check the tightness of the 6 screws that guarantee the continuity of the CT secondary circuits.

The connector accommodates wires with cross-sections of 1.5 to 6 mm² (AWG 16-10).

4. Close the side shields.

wirina

secondary.

(AWG 16-10).

The wires only exit from the base.

8. Tighten the mounting screw.

(principle similar to that of the MES module).

5. Close the side shields

5. Plug the connector into the 9-pin inlet on the rear panel (item (B)).

Connecting and assembling the CCA634 connector

6 screws that guarantee the continuity of the CT secondary circuits. The connector accommodates wires with cross-sections of 1.5 to 6 mm²

6. Insert the connector pins into the slots on the base unit.

6. Tighten the 2 CCA630 connector fastening screws on the rear panel of Sepam.

1. Open the 2 side shields for access to the connection terminals. The shields can be removed, if necessary, to make wiring easier. If removed, they must be replaced after

2. According to the wiring required, remove or reverse the bridging strap. This is used to link either terminals 1, 2 and 3, or terminals 1, 2, 3 and 9 (see picture opposite).

3. Use terminal 7 (1 A) or 8 (5 A) to measure the residual current according to the CT

4. Connect the wires using 4 mm (0.16 in) ring lugs and check the tightness of the

7. Flatten the connector against the unit to plug it into the 9-pin SUB-D connector

1 (C. 2 ((++-Î 3

Bridging of terminals 1, 2, 3 and 9

Bridging of terminals 1, 2 and 3

HAZARD OF IMPROPER OPERATION

Sepam series 20, Sepam series 40

Do not connect the connector A residual current input I0 (terminals 18 and 19) and the CCA634 residual current input (terminal 9 and 7 or 8) simultaneously.

These 2 residual current input use the same Sepam analog channel.

Do not use a CCA634 on connector B1 and residual current input I0 on connector E (terminals 14 and 15) simultaneously. Even if it is not connected to a sensor, a CCA634 on connector B1 will disturb input I0 on connector Е

Do not use a CCA634 on connector B2 and residual current input I'0 on connector E (terminals 17 and 18) simultaneously. Even if it is not connected to a sensor, a CCA634 on connector B2 will disturb input I'0 on connector E

Failure to follow this instruction can cause equipment damage.

CAUTION

Sepam series 60 and series 80

264

LPCT type current sensors

CLP1 LPCT sensor

CAUTION

HAZARD OF NON-OPERATION

 Set the microswitches for the CCA670/ CCA671 connector before commissioning the device.

■ Check that only one microswitch is in position 1 for each block L1, L2, L3 and that no microswitch is in the center position.

■ Check that the microswitch settings on all 3 blocks are identical.

Failure to follow these instructions can cause equipement damage.

Function

Low Power Current Transducer (LPCT) type sensors are voltage-output sensors, which are compliant with the IEC 60044-8 standard. The Schneider Electric range of LPCTs includes the following sensors: CLP1, CLP2, CLP3,TLP130, TLP160 and TLP190.

CCA670/CCA671 connector

Function

The 3 LPCT sensors are connected to the CCA670 or CCA671 connector on the rear panel of Sepam.

The connection of only one or two LPCT sensors is not allowed and causes Sepam to go into fail-safe position.

The two CCA670 and CCA671 interface connectors serve the same purpose, the difference being the position of the LPCT sensor plugs:

- CCA670: lateral plugs, for Sepam series 20 and Sepam series 40
- CCA671: radial plugs, for Sepam series 80.

Description

- 1 3 RJ45 plugs to connect the LPCT sensors.
- 2 3 blocks of microswitches to set the CCA670/CCA671 to the rated phase current value.
- Microswitch setting/selected rated current equivalency table (2 In values per position).
- 4 9-pin sub-D connector to connect test equipment (ACE917 for direct connector or via CCA613).

Rating of CCA670/CCA671 connectors

The CCA670/CCA671 connector must be rated according to the rated primary current In measured by the LPCT sensors. In is the current value that corresponds to the rated secondary current of 22.5 mV. The possible settings for In are (in A): 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150. The selected In value should be:

- entered as a Sepam general setting
- configured by microswitch on the CCA670/CCA671 connector.

Operating mode:

1. Use a screwdriver to remove the shield located in the "LPCT settings" zone; the shield protects 3 blocks of 8 microswitches marked L1, L2, L3.

2. On the L1 block, set the microswitch for the selected rated current to "1" (2 In values per microswitch).

■ The table of equivalencies between the microswitch settings and the selected rated current In is printed on the connector

■ Leave the 7 other microswitches set to "0".

3. Set the other 2 blocks of switches L2 and L3 to the same position as the L1 block and close the shield.

LPCT type current sensors

Test accessories

Accessory connection principle

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.

- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.

Failure to follow these instructions will result in death or serious injury.

- 1 LPCT sensor, equipped with a shielded cable fitted with a yellow RJ 45 plug which is plugged directly into the CCA670/CCA671 connector.
- 2 Sepam protection unit.
- 3 CCA670/CCA671 connector, LPCT voltage interface, with microswitch setting of rated current:
 - CCA670: lateral plugs, for Sepam series 20 and Sepam series 40
 CCA671: radial plugs, for Sepam series 60 and series 80.
- 4 CCA613 remote test plug, flush-mounted on the front for Sepam series 60 and 80 of the cubicle and equipped with a 3-meter (9.84 ft) cord to be plugged into the test plug of the CCA670/CCA671 interface connector (9-pin sub-D).
- 5 ACE917 injection adapter, to test the LPCT protection chain with a standard injection box.
- 6 Standard injection box.

LPCT type current sensors

Test accessories

ACE917 injection adapter

Function

The ACE917 adapter is used to test the protection chain with a standard injection box, when Sepam is connected to LPCT sensors.

- The ACE917 adapter is inserted between:
- The standard injection box
- The LPCT test plug:
- □ integrated in the Sepam CCA670/CCA671 interface connector
- □ or transferred by means of the CCA613 accessory.
- The following are supplied with the ACE917 injection adapter:
- Power supply cord
- 3-meter (9.84 ft) cord to connect the ACE917 to the LPCT test plug on CCA670/CCA671 or CCA613.
- CCA670/CCA671 or CCA613.

Characteristics

Power supply	115/230 V AC
Protection by time-delayed fuse 5 mm x 20 mm (0.2 x 0.79 in)	0.25 A rating

Accessory connection principle

CCA613 remote test plug

Function

The CCA613 test plug, flush-mounted on the front of the cubicle, is equipped with a 3-meter (9.84 ft) cord to transfer data from the test plug integrated in the CCA670/CCA671 interface connector on the rear panel of Sepam.

Front view with cover lifted.

2.72

 MAZARD OF CUTS

 Trim the edges of the cut-out plates to remove any jagged edges.

 Failure to follow this instruction can cause serious injury.

Cut-out.

Right side view.

267

CSH120 and CSH200 Core balance CTs

CSH120 and CSH200 core balance CTs.

Function

The specifically designed CSH120 and CSH200 core balance CTs are for direct residual current measurement. The only difference between them is the diameter. Due to their low voltage insulation, they can only be used on cables.

Characteristics

	CSH120	CSH200		
Inner diameter	120 mm (4.7 in)	200 mm (7.9 in)		
Weight	0.6 kg (1.32 lb)	1.4 kg (3.09 lb)		
Accuracy	±5% at 20°C (68°F)			
	±6% max. from -25°C to 70°C (-13°F to +158°F)			
Transformation ratio	1/470			
Maximum permissible current	20 kA - 1 s			
Operating temperature	-25°C to +70°C (-13°F to +158°F)			
Storage temperature	-40°C to +85°C (-40°F to +185°F)			

Dimensions

Dimensions	Α	В	D	E	F	Н	J	К	L
CSH120	120	164	44	190	80	40	166	65	35
(in)	(4.75)	(6.46)	(1.73)	(7.48)	(3.14)	(1.57)	(6.54)	(2.56)	(1.38)
CSH200	196	256	46	274	120	60	254	104	37
(in)	(7.72)	(10.1)	(1.81)	(10.8)	(4.72)	(2.36)	(10)	(4.09)	(1.46)

CSH120 and CSH200 Core balance CTs

ACAUTION

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.

Always use a properly rated voltage sensing device to confirm that all power is off.

■ Only CSH120, CSH200 and CSH280 core balance CTs can be used for direct residual current measurement. Other residual current sensors require the use of an intermediate device, CSH30, ACE990 or CCA634.

Install the core balance CTs on insulated cables.

■ Cables with a rated voltage of more than 1000 V must also have an earthed shielding.

Failure to follow these instructions will result in death or serious injury.

CAUTION

HAZARD OF NON-OPERATION

Do not connect the secondary circuit of the CSH core balance CTs to earth.

This connection is made in Sepam.

Failure to follow this instruction can cause equipement damages.

Assembly

Group the MV cable (or cables) in the middle of the core balance CT. Use non-conductive binding to hold the cables.

Remember to insert the 3 medium voltage cable shielding earthing cables through the core balance CT.

Assembly on MV cables.

Assembly on mounting plate.

Connection

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector \bigodot , terminals 19 and 18 (shielding).

Connection for Sepam series 60 and 80

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current I'0 input, on connector E, terminals 18 and 17 (shielding). Only for Sepam series 80.

Recommended cable

- Sheathed cable, shielded by tinned copper braid
- Minimum cable cross-section 0.93 mm² (AWG 18)
- Resistance per unit length < 100 mΩ/m ($30.5 \text{ m}\Omega/\text{ft}$)
- Minimum dielectric strength: 1000 V (700 Vrms)
- Connect the cable shielding in the shortest manner possible to Sepam

■ Flatten the connection cable against the metal frames of the cubicle. The connection cable shielding is grounded in Sepam. Do not ground the cable by any other means.

The maximum resistance of the Sepam connection wiring must not exceed 4 Ω (i.e. 20 m maximum for 100 m Ω/m or 66 ft maximum for 30.5 m Ω/ft).

CSH30 Interposing ring CT

Vertical assembly of CSH30 interposing ring CT.

Horizontal assembly of CSH30 interposing ring CT.

Function

The CSH30 interposing ring CT is used as an interface when the residual current is measured using 1 A or 5 A current transformers.

Characteristics

Weight	0.12 kg (0.265 lb)
Assembly	On symmetrical DIN rail In vertical or horizontal position

Dimensions

Connection

The CSH30 is adapted for the type of current transformer, 1 A or 5 A, by the number of turns of the secondary wiring through the CSH30 interposing ring CT:

■ 5 A rating - 4 turns 1 A rating - 2 turns

Connection to 5 A secondary circuit

1. Plug into the connector. 2. Insert the transformer secondary wire through the CSH30 interposing ring CT 4 times.

Connection to 1 A secondary circuit

1. Plug into the connector. 2. Insert the transformer secondary wire through the CSH30 interposing ring CT twice.

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector (A), terminals 19 and 18 (shielding). Connection for Sepam series 60 and 80

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current I'0 input, on connector (E), terminals 18 and 17 (shielding). Only for Sepam series 80.

Recommended cable

- Sheathed cable, shielded by tinned copper braid

- Minimum dielectric strength: 1000 V (700 Vrms)
- Maximum length: 2 m (6.6 ft).

It is essential for the CSH30 interposing ring CT to be installed near Sepam (Sepam - CSH30 link less than 2 m (6.6 ft) long). Flatten the connection cable against the metal frames of the cubicle.

The connection cable shielding is grounded in Sepam. Do not ground the cable by any other means.

ACE990 Core balance CT interface

ACE990 core balance CT interface.

mm 50 DE88323 11 -(E) 00000 E1 E2 E3 E4 E5 39 ₉₉ Schneider ¥ S1 S2 00 -(S) 20 52 96 77

Function

The ACE990 is used to adapt measurements between an MV core balance CT with a ratio of 1/n ($50 \le n \le 1500$), and the Sepam residual current input.

Characteristics

Weight	0.64 kg (1.41 lb)
Assembly	Mounted on symmetrical DIN rail
Amplitude accuracy	±1%
Phase accuracy	< 2°
Maximum permissible current	20 kA - 1 s (on the primary winding of an MV core balance CT with a ratio of 1/50 that does not saturate)
Operating temperature	-5°C to +55°C (+23°F to +131°F)
Storage temperature	-25°C to +70°C (-13°F to +158°F)

Description and dimensions

(E) ACE990 input terminal block, for connection of the core balance CT. (S) ACE990 output terminal block, for connection of the Sepam residual current.

ACE990 Core balance CT interface

Connection

Connection of core balance CT

Only one core balance CT can be connected to the ACE990 interface. The secondary circuit of the MV core balance CT is connected to 2 of the 5 ACE990 interface input terminals. To define the 2 input terminals, it is necessary to know the

- following:
- Core balance CT ratio (1/n)
- Core balance CT power
- Close approximation of rated current In0

(In0 is a general setting in Sepam and defines the earth fault protection setting range between 0.1 In0 and 15 In0).

The table below can be used to determine:

The 2 ACE990 input terminals to be connected to the MV core balance CT secondary

The type of residual current sensor to set

■ The exact value of the rated residual current In0 setting, given by the following formula: **In0 = k x number of core balance CT turns** with k the factor defined in the table below.

The core balance CT must be connected to the interface in the right direction for correct operation: the MV core balance CT secondary output terminal S1 must be connected to the terminal with the lowest index (Ex).

ACE990 Core balance CT interface

Connection (cont.)

K value	ACE990 input terminals to be connected	Residual current sensor setting	Min. MV core balance CT power
0.00578	E1 - E5	ACE990 - range 1	0.1 VA
0.00676	E2 - E5	ACE990 - range 1	0.1 VA
0.00885	E1 - E4	ACE990 - range 1	0.1 VA
0.00909	E3 - E5	ACE990 - range 1	0.1 VA
0.01136	E2 - E4	ACE990 - range 1	0.1 VA
0.01587	E1-E3	ACE990 - range 1	0.1 VA
0.01667	E4 - E5	ACE990 - range 1	0.1 VA
0.02000	E3 - E4	ACE990 - range 1	0.1 VA
0.02632	E2 - E3	ACE990 - range 1	0.1 VA
0.04000	E1 - E2	ACE990 - range 1	0.2 VA
0.05780	E1 - E5	ACE990 - range 2	2.5 VA
0.06757	E2 - E5	ACE990 - range 2	2.5 VA
0.08850	E1 - E4	ACE990 - range 2	3.0 VA
0.09091	E3 - E5	ACE990 - range 2	3.0 VA
0.11364	E2 - E4	ACE990 - range 2	3.0 VA
0.15873	E1-E3	ACE990 - range 2	4.5 VA
0.16667	E4 - E5	ACE990 - range 2	4.5 VA
0.20000	E3 - E4	ACE990 - range 2	5.5 VA
0.26316	E2-E3	ACE990 - range 2	7.5 VA

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector (A), terminals 19 and 18 (shielding).

Connection for Sepam series 60 and 80

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current I'0 input, on connector (E), terminals 18 and 17 (shielding). Only for Sepam series 80.

Recommended cables

- Cable between core balance CT and ACE990: less than 50 m (160 ft) long
- Sheathed cable, shielded by tinned copper braid between the ACE990 and
- Sepam, maximum length 2 m (6.6 ft)
- Cable cross-section between 0.93 mm² (AWG 18) and 2.5 mm² (AWG 12)
- **E** Resistance per unit length less than 100 m Ω /m (30.5 m Ω /ft)
- Minimum dielectric strength: 100 Vrms.

Connect the connection cable shielding in the shortest manner possible (2 cm or 5.08 in maximum) to the shielding terminal on the Sepam connector. Flatten the connection cable against the metal frames of the cubicle.

The connection cable shielding is grounded in Sepam. Do not ground the cable by any other means.

Example:

- Given a core balance CT with a ratio of 1/400 2 VA, used within a measurement range of 0.5 A to 60 A. How should it be connected to Sepam via the ACE990?
- 1. Choose a close approximation of the rated current In0,
- i.e. 5 A.
- 2. Calculate the ratio:
- approx. In0/number of turns = 5/400 = 0.0125.
- 3. Find the closest value of k in the table opposite to
- k = 0.01136.
- 4. Check the mininum power required for the core balance CT: 2 VA core balance $\dot{CT} > 0.1$ VA V OK.
- 5. Connect the core balance CT secondary to ACE990 input terminals E2 and E4
- 6. Set Sepam up with:
- In0 = 0.01136 x 400 = 4.5 A

This value of In0 can be used to monitor current between 0.45 A and 67.5 A

Wiring of MV core balance CT secondary circuit:

- S1 output to ACE990 E2 input terminal
 S2 output to ACE990 E4 input terminal.

schneider-electric.com

The technical guide

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading - optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

Olischill	1 -Poster arrivers		a lana	Seattle 2
take the reset of	April manufa	114		111541
	Annual Annua		Brongs Ethionics Hilds Figure 	

Sepam series 20 Sepam series 40 Sepam series 60 Sepam series 80

Order form

Rangedescription	5
Sepam series 20 and Sepam series 40	51
Sepam series 60	89
Sepam series 80	139
Additional modules and accessories	195
Sepam series 20	276
Sepam series 40	277
Sepam series 60	278
	070
Sepam series 80	2/9
Sepam series 80 Sepam 100 MI	279 280

Sepam series 20 Ready-to-use configuration

Number of identical Sepam configurations ordered

This order form can be used to define a complete Sepam configuration. Check the boxes K that match your choices.

 Sensor СТ 📃

СТ

СТ

СТ

СТ 📃

59630

CCA630

СТ 📃

СТ

СТ 📃

СТ

59629

CCA634

СТ 🛛

LPCT

LPCT

LPCT

LPCT

59631

CCA670

VT 📄

PT 📃

59632

CCT640

Base unit, conr	nectors ar	nd applic	cation			
Base unit and UMI				Application	Туре	
Base unit with advanced	IUMI	S10UD	59607	Substation	S20	59620
With lead seal acc	essory ⁽¹⁾	AMT852	59639		S24	59778
(1) Can be used only wit	h an advanced	UMI.		Transformer	T20	59621
Base unit with basic UM	1	S10UX	59603		T24	59779
Remote advanced	UMI module	DSM303	59608	Motor	M20	59622
Connection cord	L=0.6 m	CCA770	59660	Busbars	B21	59624
	L = 2 m	CCA772	59661		B22	59625
	L=4 m	CCA774	59662			
Mounting plate		AMT840	59670			
Working language						
Sepam series 20	EN/FR		59609			
	EN/ES		59611			
Connectors				Note:		
Туре	Screw-type	CCA620	59668	CCA630: 3 phase	e CT	
	Ring-lug type	CCA622	59669	00A034. 3 prias	601 +10	

Modules, communica	ation interfa	aces and	core balance CTs					
Core balance CTs			Modules					
Core balance CT, Ø 120 mm	CSH120	59635	Input / output modules					
Core balance CT, Ø 200 mm	CSH200	59636	10 inputs + 4 outputs, 24-25	0 V DC			MES114	59646
Interposing ring CT	CSH30	59634	10 inputs + 4 outputs, 110-1	25 V DC / V AC			MES114E	59651
Core balance CT interface	ACE990	59672	10 inputs + 4 outputs, 220-2	50 V DC / V AC			MES114F	59652
Note: only one core balance CT c	an be added.		Note: the Sepam base unit has 4 outputs; only one input/output module c				e can be adde	d.
Warning: Using core balance CTs is incompatible with		Remote modules				Connectio	n cord	
the CCA634.			8 temperature sensor	MET148-2	59641	L=0.6 m	CCA770	59660
			module			L=2 m	CCA772	59661
						L=4 m	CCA774	59662
		Note: the MET148-2 can be used only with applications T and M.						
		Analog output module	MSA141	59647 📃	L=0.6 m	CCA770	59660	
				—	L=2m	CCA772	59661	
						L=4 m	CCA774	59662
			Note: MSA141 can be used	with all application	ns.			
			Communication inter	faces				
			Modbus interfaces				Connectio	n cord
			2-wire RS 485 interface	ACE949-2	59642		CCA612	59663
			4-wire RS 485 interface	ACE959	59643		CCA612	59663
			Fiber optic interface	ACE937	59644		CCA612	59663
			Multi-protocol interfaces	(Modbus, DNP3	or IEC 6087	0-5-103)		
			2-wire RS 485 interface	ACE969TP-2	2 59723		CCA612	59663
			Fiber optic interface	ACE969FO-2	2 59724		CCA612	59663
			Note: only one communicat	tion interface per S	Sepam applic	ation.		

Sepam series 40 Ready-to-use configuration

Number of identical Sepam

configurations ordered

This order form can be used to define a complete Sepam configuration. Check the boxes or indicate the required quantities in the appropriate spaces according to your choices.

Base unit, con	nectors ai	nd appli	cation						
Base unit and UMI				Application	Туре		Sensor		
Base unit with advanced	IUMI	S10MD	59604	Substation	S40	59680	CT 📃	CT 📃	LPCT
With lead seal acc	essory ⁽¹⁾	AMT852	59639		S41	59681	CT 🗖	CT 📃	LPCT
(1) Can be used only wit	h an advanced	I UMI.			S42	59682	CT 📃	CT 🔲	LPCT
Base unit with basic UM		S10MX	59600		S43	59687	CT 🗖	CT 📃	LPCT
Remote advanced	I UMI module	DSM303	59608		S44	59688	CT 🗖	CT 📃	LPCT
Connection cord	L=0.6 m	CCA770	59660		S50	59780	CT 🗖	CT 📃	LPCT
	L = 2 m	CCA772	59661		S51	59781	CT 🗖	CT 📃	LPCT
	L=4 m	CCA774	59662		S52	59782	CT 🗖	CT 📃	LPCT
Mounting plate		AMT840	59670		S53	59783	CT 📃	CT 🔲	LPCT
Working language					S54	59786	CT 🗖	CT 📃	LPCT
Sepam series 40	EN/FR		59615	Transformer	T40	59683	CT 📃	CT 📃	LPCT
	EN/ES		59616		T42	59684	CT 📃	CT 🔲	LPCT
Connectors					T50	59784	CT 📃	CT 📃	LPCT
Type Screw-type CCA	A620 - 59668 a	nd CCA626	- 59656 📃		T52	59785	CT 🗖	CT 📃	LPCT
Ring-lug type CCA	622 - 59669 a	nd CCA627	- 59657 📃	Motor	M40	59689	CT 🗖	CT 🔲	LPCT
					M41	59685	CT 🗖	CT 📃	LPCT
				Generator	G40	59686	CT 📃	CT 📃	LPCT
				Note:			59630	59629	59631
				CCA630: 3 phase (CCA630	CCA634	CCA670

CCA630: 3 phase CT CCA634: 3 phase CT + IO

Modules, communicat	ion interfa	ices and	core balance CTs
Core balance CTs			Modules
Core balance CT, Ø 120 mm	CSH120	59635	Input / output module
Core balance CT, Ø 200 mm	CSH200	59636 📃	10 inputs + 4 outputs, 24
Interposing ring CT	CSH30	59634	10 inputs + 4 outputs, 1
Core balance CT interface	ACE990	59672	10 inputs + 4 outputs, 22

Note: only one core balance CT can be added. Note: using core balance CTs is incompatible with the CCA634.

Input / output modules 10 inputs + 4 outputs, 24-250 V DC

10 mpulo + 00 lpulo, 2+	200 0 00			MLOTIT	550-	
10 inputs + 4 outputs, 110	MES114E	596	51 📃			
10 inputs + 4 outputs, 220	MES114F	596	52 📃			
Note: the Sepam base un	nit has 4 outputs	s; only one inp	ut/output modu	ule can be a	dded.	
Remote modules			_	Connecti	ion cord	
8 temperature sensor	MET148-2	59641	L=0.6 m	CCA770	59660	
module			L=2 m	CCA772	59661	
			L=4 m	CCA774	59662	
Note: the MET148-2 can Maximum of 2 modules p	be used only w er application.	ith application	s T, M and G.			
Analog output module	MSA141	59647	L=0.6 m	CCA770	5966	i0 📃
			L=2 m	CCA772	5966	51 📃
			L=4 m	CCA774	5966	52
Note: the MSA141 can be	e used with all t	he application	S.			
Communication int	erfaces					
Modbus interfaces				Connecti	ion cord	
2-wire RS 485 interface	ACE949-2	59642		CCA612	5966	i3 📃
4-wire RS 485 interface	ACE959	59643		CCA612	5966	33 📃
Fiber optic interface	ACE937	59644		CCA612	5966	33 📃
Multi-protocol interfac	es (Modbus, D	NP3 or IEC 6	0870-5-103)			
2-wire RS 485 interface	ACE969TP-2	59723		CCA612	5966	33 📃
Fiber optic interface	ACE969FO-2	59724		CCA612	5966	33 📃
Note: only one interface	per application.					
TCP/IP interfaces (IEC	61850 and Mo	dbus)				
TCP/IP firmware option		59754				
RJ45 interface	ACE850TP	59658				
Fiber optic interface	ACE850FO	59659				

Note: connection cords are included with the ACE850TP and ACE850FO interfaces.

Note: only one communication interface per Sepam application.

Note: a specific firmware is necessary to one TCP/IP interfaces.

MEQ114

50646 I

Sepam series 60

Ready-to-use configuration

Number of identical Sepam

configurations ordered

This order form can be used to define a complete Sepam configuration. Check the boxes or indicate the required quantities in the appropriate spaces according to your choices.

B1 sensor

CT 🛛 CT 🔽

CT 🔽 CT

CT [

CT 🔽

CT 🔽

СТ 📃

59630

CCA630

LPCT [

LPCT

LPCT

LPCT

LPCT

LPCT

LPCT

LPCT

59702

CCA671

CT 🔽

CT [

CT 🔲

CT

CT 🛛

CT 📃

CT 🔽

CT 🗌

59629

CCA634

Bas	e unit and UM	I			Application	Туре		
Base	unit with mimic-b	ased UMI	SEP666	59837	Substation	S60	59787	
Base	unit with advance	ed UMI	SEP363	59836		S62	59789	
	With lead seal ad	ccessory (1)	AMT852	59639	Transformer	T60	59790	
Base	unit without basic	c UMI	SEP060	59835		T62	59791	
	Remote advance	ed	DSM303	59608	Motor	M61	59792	
	UMI module (cor	mpulsory with	SEP060)		Generator	G60	59793	
	Connection cord	l L = 0.6 m	CCA770	59660		G62	59794	
		L = 2 m	CCA772	59661 📃	Capacitor	C60	59795	
		L = 4 m	CCA774	59662 📃				
	Mounting plate		AMT880	59706				
Note	: 8 mounting clips	s included						
Mer	nory cartridge							
Mem	ory cartridge		MMS020	59707				
Wo	rking language)						
Sepa	ım series 60	EN/FR		59846				
		EN/ES		59847				
Cor	nectors							
Туре		Screw-type	CCA620	59668	Note:			
		Ring-lug type	CCA622	59669	CCA630: 3 ph CCA630: 3 ph	ase CT ase CT + IO		

Sepam series 60 base unit, cartridge, connectors and application

(1) Can be used only with an advanced UMI

wouldes, communicat	ionintei	laces	anu
Core balance CTs			
Core balance CT, Ø 120 mm	CSH120	59635	
Core balance CT, Ø 200 mm	CSH200	59636	
Interposing ring CT	CSH30	59634	
Core balance CT interface	ACE990	59672	

Note: only one core balance CT can be added.

Note: using core balance CTs is incompatible with the CCA634.

re balance C <u>Ts</u>						
Modules						
Input / output modules						
14 inputs (24-250 V DC)	+ 6 outputs				MES120	59715
14 inputs (220-250 V DC) + 6 outputs				MES1200	59716
14 inputs (110-125 V DC) + 6 outputs				MES120H	59722
Note: the Sepam base u	nit comes with 4	4 outputs	; 2 inpu	t/output mod	dules can be	added.
Remote modules					Connecti	on cord
8 temperature sensor	MET148-2	59641		L=0.6 m	CCA770	59660
module				L=2m	CCA772	59661
				L=4 m	CCA774	59662
Maximum of 2 MET 148-	2 modules per a MSA141	applicatio	on.	l = 0.6 m	CCA770	59660
Analog output module	MSA141	596	647	L=0.6 m	CCA770	59660
				L=2m	CCA772	59661
				L=4 m	CCA774	59662
Note: the MSA141 can b	e used with all t	ne applic	ations.		1100005	50740
Synchro-check module					MCS025	59/12
Mounting plate					AM 1840	59670
Note: the MCS025 can be Comes with connection of	oe used only with cord CCA785 ar	h applica nd voltag	tions S e conn	, G and T. ector CCT64	40.	
Communication inte	erfaces					
Modbus interfaces					Connecti	on cord
2-wire RS 485 interface	ACE949-2	59642			CCA612	59663
4-wire RS 485 interface	ACE959	59643			CCA612	59663
Fiber optic interface	ACE937	59644			CCA612	59663
Multi-protocol interfac	es (Modbus, Di	NP3 or II	EC 608	70-5-103)		
2-wire RS 485 interface	ACE969TP-2	59723			CCA612	59663
Fiber optic interface	ACE969FO-2	59724			CCA612	59663

TCP/IP interfaces (IEC 61850 and Modbus) 59754 TCP/IP firmware option

I CE/IF IIIIIwale option		59/54	
RJ45 interface	ACE850TP	59658	
Fiber optic interface	ACE850FO	59659 📃	

Note: only one communication interface per Sepam application.

Note: a specific firmware is necessary to use the TCP/IP interfaces.

Note: the connection cord is included in ACE850 TP and FO interfaces. Note: only one interface ACE850TP or ACE850FO per Sepam application.

Sepam series 80 Ready-to-use configuration

Number of identical Sepam configurations ordered

This order form can be used to define a complete Sepam configuration. Check the boxes or indicate the required quantities in the appropriate spaces according to your choices.

					0	,								
Sepam series	s 80 base u	init, car	tridge	, conn	ectors and	applica	atior	ו						
Base unit and UM	VI I				Application	Туре		B1 sen	sor		B2 sen	sor		
Base unit with mimic	-based UMI	SEP888	59	705 📃	Substation	S80 5972	29 📃	CT 🔲	CT 📃	LPCT 🔛				
Base unit with advan	ced UMI	SEP383	59	704 📃		S81 5973	30 📃	CT 📃	CT 📃	LPCT 📃				
With lead seal	accessory (1)	AMT852	59	639 📃		S82 5973	31 📃	CT 📃	CT 📃	LPCT				
Base unit without bas	sic UMI	SEP080	59	703 📃		S84 5973	32 📃	CT 📃	CT 📃	LPCT				
Remote advan	ced	DSM303	59	608 📃	Transformer	T81 5973	33 📃	CT 📃	CT 📃	LPCT 📃				
UMI module (c	ompulsory with	SEP080)				T82 5973	34	CT 📃	CT 📃	LPCT				
Connection co	rd L = 0.6 m	CCA770	59	660 📃		T87 5973	35 📃	CT 📃	CT 📃		CT 📃	CT 📃		
	L=2m	CCA772	59	661 📃	Motor	M81 5973	36 📃	CT 📃	CT 📃	LPCT 📃				
	L=4 m	CCA774	59	662 📃		M87 5973	37 📃	CT 📃	CT 📃	LPCT	CT 📃	CT 📃	LPCT	
Mounting plate	;	AMT880	59	706 📃		M88 5973	38 📃	CT 📃	CT 📃		CT 📃	CT 📃		
Note: 8 mounting cli	os included				Generator	G82 5973	39 📃	CT 📃	CT 📃	LPCT 📃				
Memory cartridg	е					G87 5974	11	CT 📃	CT 📃	LPCT	CT 📃	CT 📃	LPCT	
Memory cartridge		MMS020	59	707 📃		G88 5974	12	CT 📃	CT 📃		CT 📃	CT 📃		
Extended memory ca	artridge	MMR020	59	701 📃	Busbar	B80 5974	13 📃	CT 📃	CT 📃	LPCT 📃				
Logipam option		SFT080	59	711 📃		B83 5974	14	CT 📃	CT 📃					VT 📃
Note: option require	d to use Logipa	m program.			Capacitor	C86 5974	15	CT 📃	CT 📃	LPCT	CT 📃	CT 📃		
Working language	ge							59630	59629	59702	59630	59629	59702	59632
Sepam series 80	EN/FR		59	709 📃				CCA630	CCA634	CCA671	CCA630	CCA634	CCA671	CCT640
	EN/ES		59	710 📃										
Connectors														
Туре	Screw-type	CCA620	59	668	Note:									
	Ring-lug type	e CCA622	59	669 📃	CCA630: 3 ph	ase CTCC.	A634:	3 phase (CT + IO					
(1) Can be used only	with an advanc	ed UMI												
Modules, con	nmunicati	on inter	faces	and co	ore balance	CTs								
Core balance C	Ts				Modules									
Core balance CT, Ø	120 mm	CSH120	59635		Input / output	modules								
Core balance CT, Ø 2	200 mm	CSH200	59636		14 inputs (24-2	250 V DC) +	- 6 out	puts				MES120	59715	
Interposing ring CT		CSH30	59634		14 inputs (220-	-250 V DC)	+ 6 ol	utputs				MES120	G 59716	
Core balance CT inte	erface	ACE990	59672		14 inputs (110-	125 V DC)	+ 6 ou	utputs				MES120	H 59722	
Note: the total numb	er of core balan	ce CTs can	not exce	ed 2.	Note: the Sepa	am base un	nit corr	nes with 5	outputs;	3 input/ou	tput modi	ules can b	e added.	
Warning: using core	balance CTs is	incompatik	le with		Remote mod	ules						Connec	tion cord	
the CCA634.					8 temperature	sensor	MET	148-2	59641	L=	0.6 m	CCA770	59660	
					module					L =	2 m	CCA772	59661	
										L =	4 m	CCA774	59662	
					Note: the MET	148-2 can	be us	ed only wi	ith applica	ations T, N	l, G and C	<i>).</i>		
					iviaximum of 2	IVIE I 148-2	modu	uies per aj	pplication	7.	0.0	004770	50/	

Note: the MET148-2 car. Maximum of 2 MET 148-) be used only w 2 modules per a	vith applica	ations 1.	T, M, G and	С.	
Analog output module	MSA141	5964	47 📃	L=0.6 m	CCA770	59660
				L=2 m	CCA772	59661
				L=4 m	CCA774	59662
Note: the MSA141 can l	be used with all	the applic	ations			
Synchro-check module					MCS025	59712
Mounting plate					AMT840	59670
Note: the MCS025 can be used only with applications S, B, G and T. Comes with connection cord CCA785 and voltage connector CCT640.						
Communication inte	erfaces					
Modbus interfaces					Connectio	on cord
2-wire RS 485 interface	ACE949-2	59642			CCA612	59663
4-wire RS 485 interface	ACE959	59643			CCA612	59663
Fiber optic interface	ACE937	59644			CCA612	59663
Multi-protocol interfac	es (Modbus, D	NP3 or IE	C 608	70-5-103)		
2-wire RS 485 interface	ACE969TP-2	59723			CCA612	59663
Fiber optic interface	ACE969FO-2	59724			CCA612	59663
TCP/IP interfaces (IEC	61850 and Mo	dbus)				
TCP/IP firmware option		597	54 📃			
RJ45 interface	ACE850TP	596	58 📃			
Fiber optic interface	ACE850FO	596	59 📃			
Note: the total number of	^f communication	n interface	s can	not exceed 2		
Note: a specific firmware	is necessary to	use the T	CP/IF	interfaces.		
All de la construction de la contra de			0 F 0 T F		000 1110	

Note: connection cords are included with the ACE850TP and ACE850FO interfaces.

Note: only one interface ACE850TP or ACE850FO per Sepam application.

Order form

Sepam 100 MI

The ready-to-use base unit

Base unit	Sepam 100MI	
References	Application	Quantity
REL59500	Sepam 100MI-X00	
REL59501	Sepam 100MI-X01	
REL59502	Sepam 100MI-X02	
REL59503	Sepam 100MI-X03	
REL59510	Sepam 100MI-X10	
REL59511	Sepam 100MI-X11	
REL59512	Sepam 100MI-X12	
REL59513	Sepam 100MI-X13	
REL59514	Sepam 100MI-X14	
REL59515	Sepam 100MI-X15	
REL59516	Sepam 100MI-X16	
REL59517	Sepam 100MI-X17	
REL59518	Sepam 100MI-X18	
REL59522	Sepam 100MI-X22	
REL59523	Sepam 100MI-X23	
REL59525	Sepam 100MI-X25	
REL59526	Sepam 100MI-X26	
REL59527	Sepam 100MI-X27	

Sepam accessories and spare parts

Check the boxes or indicate the required quantities in the appropriate spaces according to your choices.

according to your choices.			
Mounting accessories			
Sepam series 20, Sepam series 40 or MCS025	:	50070	
Mounting plate	AMT840	59670	
Sepam series 20, 40, 60 and 80 with advanced	UMI	50620	
Lead seal accessory	AM1852	29039	
Sepam series 60 and Sepam series 80		59706	
	AIVITOOU	50600	
Blanking plate	AM1820	59699	
Software tools		50670	
Sepam PC software: SF I 2841 and SF I 2826 (1 CD-POM without connection cord CC A783)	SF12841 CD	59679	
PC cord RS232 connection	CCA783	59664	
PC cord USB connection	CCA784	59671	
Loginam SET2885 programming software	CD SET2885	59727	
IEC 61850 configuration software	CD SET850	59726	
	00 01 1000		
Senem corrigo 20 and corrigo 40			
10 inputs + 4 outputs 24-250 V DC	MES114	59646	
$\frac{10 \text{ inputs} + 4 \text{ outputs}}{110 \text{ inputs} + 4 \text{ outputs}}$	MES114E	59651	
$\frac{10 \text{ inputs} + 4 \text{ outputs}}{10 \text{ inputs} + 4 \text{ outputs}} \frac{220-250 \text{ V DC}}{10 \text{ V AC}}$	MES11/E	59652	
Senam carica 60 and carica 90	MEGTI		
14 inputs + 6 outputs 24-250 V DC	MES120	59715	
$\frac{14 \text{ inputs} + 6 \text{ outputs}}{14 \text{ inputs} + 6 \text{ outputs}} \frac{110-125 \text{ VDC}}{125 \text{ VDC}}$	MES120H	59722	
14 inputs + 6 outputs, 220-250 V DC	MES120G	59716	
Remote modulos and corde	WEST200		
8 temperature senser medule	MET149.2	59641	
	MCA141	59647	
Analog output module	DSM202	59608	
	DSINISUS	59712	
CCA785)	WC5025	59712	
Remote module connection cord L = 0.6 m	CCA770	59660	
Remote module connection cord L = 2 m	CCA772	59661	
Remote module connection cord L = 4 m	CCA774	59662	
Synchro-check module connection cord	CCA785	59665	
L = 2 m (spare parts)			
Communication accessories			
Sepam communication interfaces			
2-wire RS 485 Modbus interface (without CCA612)	ACE949-2	59642	
4-wire RS 485 Modbus interface (without CCA612)	ACE959	59643	
Fiber optic Modbus interface (without CCA612)	ACE937	59644	
RS 485 multi-protocol 2-wire interface (without CCA612)	ACE969TP-2	59723	
Fiber optic multi-protocol interface (without CCA612)	ACE969FO-2	59724	
Connection cord, L = 3 m	CCA612	59663	
RJ45 TCP/IP interface (with CCA614)	ACE850TP	59658	
Fiber optic TCP/IP interface (with CCA614)	ACE850FO	59659	
Connection cord, L= 3 m, for TCP/IP interfaces	CCA614	59751	
Converters			
RS 232 / RS 485 converter	ACE909-2	59648	
RS 485 / RS 485 interface (AC)	ACE919CA	59649	
RS 485 / RS 485 interface (DC)	ACE919CC	59650	
Ethernet gateway	EGX100	EGX100MG	
Ethernet webserver	EGX300	EGX300MG	
Sepam IEC 61850 server (with one ECI850 cat. no.	ECI850	59638	
59653 and two surge arresters cat. no. 16595)		TOPEAKO400	
Ethernet configuration kit for ECI850		ICSEARU100	
Core balance CTs			
Core balance CI, Ø 120 mm	CSH120	59635	
Core balance CT, Ø 200 mm	CSH200	59636	
Interposing ring CT	CSH30	59634	
Core balance CT interface	ACE990	59672	
Accessories for phase-current sense	ors (LPCT)		
LPCT injection adapter	ACE917	59667	
Remote LPCT test plug	CCA613	59666	

Sepam accessories and spare parts

Check the boxes or indicate the required quantities in the appropriate spaces according to your choices.

Manuals						
Sepam series 20						
User's manual	PCRED301005	EN FR				
Sepam series 40						
User's manual	PCRED301006	EN FR				
Sepam series 60						
User's manual	SEPED310017	EN FR				
Sepam series 80						
Metering, protection, control and monitoring user's manual	SEPED303001	EN 📄 FR 📄				
Modbus communication user's manual	SEPED303002	EN 🔄 FR 🔤				
Installation and operation manual	SEPED303003	EN FR				
Communication protocol						
DNP3 protocol	SEPED305001	EN FR				
IEC 60870-5-103 protocol	SEPED305002	EN FR				
Note: the technical manuals must be ordered separately form the CDI centre in Evreux.						
Spare connectors						
Sepam						
20-pin screw-type connector	CCA620	59668				
20-pin ring lug connector	CCA622	59669				
6-pin screw-type connector	CCA626	59656				
6-pin ring lug connector	CCA627	59657				
1 A / 5 A CT current connector	CCA630	59630				
1A/5ACT + IO current connector	CCA634	59629				
LPCT lateral current connector	CCA670	59631				
LPCT radial current connector	CCA671	59702				
VT voltage connector	CCT640	59632				
MES modules						
Connectors for 2 MES114 and 2 MES120	Kit 2640	59676				
Spare Sepam series 60 and series	s 80 base un	its				
Series 60 base unit with mimic-based UMI	SEP666	59837				
Series 60 base unit with advanced UMI	SEP363	59836				
Series 60 base unit without UMI	SEP060	59835				
Series 80 base unit with mimic-based UMI	SEP888	59705				
Series 80 base unit with advanced UMI	SEP383	59704				
Series 80 base unit without UMI	SEP080	59703				
12 spring clips		XBTZ3002				

Note: the base units are supplied without connectors and without memory cartridges.

Sepam accessories and spare parts

Spare Sepam series 60 and series 80 memory cartridge

Note: memory cartridges cannot be sold without a	pplication. When	ordering a base	e unit or a	-
Extended memory cartridges (Sepam 80 only)	MMR020	59701		Ţ
Memory cannuges	1011015020	59/0/		

Application series 60	Туре		Working language			TCP/IP option	
			59846	59847		59754	
Substation	S60	59787	EN/FR	EN/SP			
	S62	59789	EN/FR	EN/SP			
Transformer	T60	59790	EN/FR	EN/SP			
	T62	59791	EN/FR	EN/SP			
Motor	M61	59792	EN/FR	EN/SP			
Generator	G60	59793 📃	EN/FR	EN/SP			
	G62	59794	EN/FR	EN/SP			
Capacitor	C60	59795	EN/FR	EN/SP			
Application	Туре		Working la	nguage	Logipam	TCP/IP	
series 80						option	
			59709	59710	59711	59754	
Substation	S80	59729	EN/FR	EN/SP			
	S81	59730	EN/FR	EN/SP			
	S82	59731 📃	EN/FR	EN/SP			
	S84	59732	EN/FR	EN/SP			
Transformer	T81	59733	EN/FR	EN/SP			
	T82	59734 📃	EN/FR	EN/SP			
	T87	59735	EN/FR	EN/SP			
Motor	M81	59736	EN/FR	EN/SP			
	M87	59737	EN/FR	EN/SP			
	M88	59738	EN/FR	EN/SP			
Generator	G82	59739	EN/FR	EN/SP			
	G87	59741 📃	EN/FR	EN/SP			
	G88	59742	EN/FR	EN/SP			
Busbar	B80	59743	EN/FR	EN/SP			
	B83	59744	EN/FR	EN/SP			
Canacitor	C86	59745	EN/ER	EN/SP			

Note: customized reference for series 80 only:

Check the boxes \mathbf{X} or indicate the required quantities in the appropriate spaces according to your choices.

Sepam series 20, 40, 60 and 80 UMI rep	olacement k	it	
Kit advanced UMI 20/40 (serial number < 0440001)	SDK303	59694	
Kit advanced UMI 20/40 (serial number > 0440001)	SDK313	59695	
Kit advanced UMI series 60 and series 80	SDK383	59696	
Kit mimic-based UMI series 60 and series 80	SDK888	59697	
UMI tool kit	SDK000	59698	

Note: the UMI tool kit is required for installing the UMI kit. Note: the same kit can be used with both Sepam series 20 and Sepam series 40. Note: the same kit can be used with both Sepam series 60 and Sepam series 80.

ote

Schneider Electric Industries SAS

35, rue Joseph Monier CS 30323 F - 92506 Rueil-Malmaison Cedex RCS Nanterre 954 503 439 Capital social 896 313 776 €

http://www.schneider-electric.com SEPED303005EN As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

 $\begin{array}{c} & & \\ & &$

Design: Schneider Electric Industries SAS - Polynotes - Sedoc Publishing: Schneider Electric Industries SAS Printing: